Skip to main content
Log in

A universal nonlinear model for the dynamic behaviour of shock absorbers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Modern hydraulic shock absorbers display a wealth of nonlinear effects such as hysteresis and instabilities at high flow rates. Despite their wide application in practically all vehicles, both on- and off-road, a universal analytical model that captures the essential shock absorber dynamics and compressibility effects for various common damper architectures is lacking. This paper presents such a model and derives its system of equations from first principles for dampers of monotube- and piggyback-type. By applying the model to a typical suspension configuration, all relevant system variables, such as pressure drop, shim stack deflection, and damping force, are computed. Nonlinear oscillations and hysteresis loops, which might prove dangerous during operation, can be predicted effortlessly. The results achieved with the mathematical model are validated and agree well with test bench measurements. Furthermore, the presented approach is shown to be easily modifiable to describe the physical processes within other hydraulic shock absorber geometries in use today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

Abbreviations

a :

Shim radius

A :

Chamber cross-sectional area

\(A_{b}\) :

Bleed area

\(A_{p}\) :

Area of acting pressure

\(A_{v}\) :

Section of valve opening

b :

Leakage gap width

\(a_{c}\) :

Clamp radius

c :

Damping coefficient

\(C_{d}\) :

Discharge coefficient

\(C_{f}\) :

Moment coefficient

D :

Flexural rigidity

E :

Young’s modulus

\(F_{0}\) :

Pretension force

\(F_{i}\) :

Impact force

\(F_{m}\) :

Momentum force

\(F_{p}\) :

Pressure force

k :

Stiffness

L :

Chamber length

l :

Leakage gap length

m :

Mass

p :

Pressure

q :

Load per unit area

\(Q_{b}\) :

Bleed flow rate

\(Q_{l}\) :

Leakage flow rate

\(Q_{v}\) :

Valve flow rate

t :

Shim thickness

w :

Unit line load

x :

Displacement

\(\alpha \) :

Flow area proportionality factor

\(\alpha _{T}\) :

Thermal expansion coefficient

\(\beta \) :

Compressibility

\(\delta \) :

Shim deflection

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Poisson’s ratio

\(\rho \) :

Density

\(\sim \) :

Check valve piston quantity

0:

Reference value

c :

Compression quantity

d :

Damper compartment quantity

g :

Gas reservoir quantity

r :

Rebound quantity

References

  1. Dixon, J.C.: The Shock Absorber Handbook. Wiley, West Sussex (2008)

    Google Scholar 

  2. Boggs, C., Ahmadian, M., Southward, S.: Efficient empirical modelling of a high-performance shock absorber for vehicle dynamics studies. Veh. Syst. Dyn. 48(4), 481–505 (2010)

    Article  Google Scholar 

  3. Wang, W., Zhou, Z., Yu, D., Qin, Q., Iwnicki, S.: Rail vehicle dynamic response to a nonlinear physical in-servicemodel of its secondary suspension hydraulic dampers. Mech. Syst. Signal Process. 95, 138–157 (2017)

    Article  Google Scholar 

  4. Farjoud, A., Ahmadian, M., Craft, M., Burke, W.: Nonlinear modeling and experimental characterization of hydraulic dampers: effects of shim stack and orifice parameters on damper performance. Nonlinear Dyn. 67(2), 1437–1456 (2012)

    Article  Google Scholar 

  5. Skačkauskas, P., Žuraulis, V., Vadluga, V., Nagurnas, S.: Development and verification of a shock absorber and its shim valve model based on the force method principles. Eksploatacja i Niezawodność 19(1), 126–133 (2017)

    Article  Google Scholar 

  6. Lang, H.H.: A Study of the Characteristics of Automotive Hydraulic Dampers at High Stroking Frequencies. University of Michigan, Ann Arbor, Michigan (1977)

    Google Scholar 

  7. Reybrouck, K.: A non linear parametric model of an automotive shock absorber. SAE Transactions, 1170–1177 (1994)

  8. Lee, K.: Numerical modelling for the hydraulic performance prediction of automotive monotube dampers. Veh. Syst. Dyn. 28(1), 25–39 (1997)

    Article  Google Scholar 

  9. Talbott, M.S., Starkey, J.: An experimentally validated physical model of a high-performance mono-tube damper. SAE Transactions, 2422–2439 (2002)

  10. Rhoades, K.S.: Development and experimental verification of a parametric model of an automotive damper. Master’s thesis, Texas A &M University (2006)

  11. Duym, S., Stiens, R., Reybrouck, K.: Evaluation of shock absorber models. Veh. Syst. Dyn. 27(2), 109–127 (1997)

    Article  Google Scholar 

  12. Duym, S.W., Stiens, R., Baron, G.V., Reybrouck, K.G.: Physical modeling of the hysteretic behaviour of automotive shock absorbers. Technical Report, SAE Technical Paper (1997)

  13. Xu, J., Chu, J., Ma, H.: Hybrid modeling and verification of disk-stacked shock absorber valve. Adv. Mech. Eng. 10(2), 1687814018756398 (2018)

    Article  Google Scholar 

  14. Czop, P., Sławik, D., Śliwa, P., Wszołek, G.: Simplified and advanced models of a valve system used in shock absorbers. J. Achiev. Mater. Manuf. Eng. 33(2), 173–180 (2009)

    Google Scholar 

  15. Bell, D., Beale, R.: Numerical investigation of a mono-tube damper with a shim stack. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 231(9), 1762–1774 (2017)

    Article  Google Scholar 

  16. Hofmann, T., Brenner, T., Bestle, D.: Investigation of the disc deflection behavior of shim valves in vehicle shock absorbers. Technical Report, SAE Technical Paper (2018)

  17. Schickhofer, L., Wimmer, J.: Fluid-structure interaction and dynamic stability of shock absorber check valves. J. Fluids Struct. 110, 103536 (2022)

    Article  Google Scholar 

  18. Feseker, D., Kinell, M., Neef, M.: Experimental study on pressure losses in circular orifices with inlet cross flow. J. Turbomach. 140(7), 071006 (2018)

    Article  Google Scholar 

  19. McCloy, D., Martin, H.R.: Control of Fluid Power: Analysis and Design. Ellis Horwood Ltd., Hertfordshire (1980)

    Google Scholar 

  20. Segel, L., Lang, H.: The mechanics of automotive hydraulic dampers at high stroking frequencies. Veh. Syst. Dyn. 10(2–3), 82–85 (1981)

    Article  Google Scholar 

  21. Munson, B.R., Young, D.F., Okiishi, T.H.: Fundamentals of Fluid Mechanics. Wiley, West Sussex (1990)

    MATH  Google Scholar 

  22. Roark, R.J., Young, W.C.: Formulas for Stress and Strain, \(6^{th}\) edn. McGraw-Hill, New York (1989)

    Google Scholar 

  23. Haj-Kacem, R.B., Ouerfelli, N., Herráez, J., Guettari, M., Hamda, H., Dallel, M.: Contribution to modeling the viscosity Arrhenius-type equation for some solvents by statistical correlations analysis. Fluid Phase Equilib. 383, 11–20 (2014)

    Article  Google Scholar 

  24. Stewart, K.: Avoiding stability-induced inefficiencies in BDF methods. J. Comput. Appl. Math. 29(3), 357–367 (1990)

  25. Hindmarsh, A.C.: ODEPACK: a systematized collection of ODE solvers. Sci. Comput. 1, 55–64 (1983)

    MathSciNet  Google Scholar 

  26. Radhakrishnan, K., Hindmarsh, A.C.: Description and use of LSODE, the Livermore solver for ordinary differential equations. National Aeronautics and Space Administration, Lawrence Livermore National Laboratory Report UCRL-ID-113855 (1993)

Download references

Acknowledgements

Johannes Wimmer is gratefully acknowledged for providing the test bench data for validation.

Funding

This work was enabled by computational resources and research budget from KTM and KTM TECHNOLOGIES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Schickhofer.

Ethics declarations

Conflict of interest

There is no conflict of interest that would have biased this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Baseline system properties

The properties listed in Tables 1, 2 and 3 for the shock absorber geometry and the damper fluid are used as baseline for the results presented in Sect. 4. Where other values are used, this is explicitly stated in the text. For the shim stacks the following setup of circular annular shims is used:

  • The compression stack is built up of shims with radii \(\left[ a_{k}\right] =\left[ 12,13,14,15,16,18,19,20,21,22,\right. \) \(\left. 22,22,22,16,22,22,22,22,22.5\right] \times 10^{-3}\,\hbox {m}\) and thicknesses \(\left[ t_{k}\right] =\left[ 0.20,0.25,0.25,0.20,0.20,\right. \) \(0.20,0.20,0.20,0.25,0.20,0.20,0.20,0.20,0.10,0.20,\) \(\left. 0.20,0.20,0.20,0.20\right] \times 10^{-3}\,\hbox {m}\) with a clamp radius of \(a_{c}=11\times 10^{-3}\,\hbox {m}\).

  • The rebound stack consists of shims with radii \(\left[ a_{k}\right] =\left[ 13,14,15,16,17,18,12,14,20,20,20,\right. \) \(\left. 20,20\right] \times 10^{-3}\,\hbox {m}\) and thicknesses \(\left[ t_{k}\right] =\left[ 0.30,0.30,\right. \) \(\left. 0.30,0.30, 0.25,0.25,0.10,0.10,0.15,0.20,0.20,0.20,0.20\right] \times 10^{-3}\,\hbox {m}\) with a clamp radius of \(a_{c}=11.5\times 10^{-3}\,\hbox {m}\).

  • The compression stack on the check valve piston is built up of shims with radii \(\left[ a_{k}\right] =\left[ 5,7,8,9,11,11,6,11,11,11\right] \times 10^{-3}\,\hbox {m}\) and thicknesses \(\left[ t_{k}\right] =\left[ 0.20,0.20,0.20,0.20,0.20,0.20,0.10,0.20,0.20,0.20\right. ]\times 10^{-3}\,\hbox {m}\) with a clamp radius of \(a_{c}=4\times 10^{-3}\,\hbox {m}\). Moreover, an additional spring with a pretension of \(F_{0}={43.2}\,\hbox {N}\) and a stiffness of \(k={16000}{\,\hbox {N m}^{-1}}\) is applied.

  • The check valve is one annular shim of an inner radius of \(4\times 10^{-3}\,\hbox {m}\), an outer radius of \(6.3\times 10^{-3}\,\hbox {m}\), and a thickness of \(0.30\times 10^{-3}\,\hbox {m}\). The valve is spring-loaded with a pretension of \(F_{0}={0.35}\,\hbox {N}\) and a stiffness of \(k={200}{\,\hbox {N m}^{-1}}\).

Table 1 Properties of the shock absorber pistons and compartment

Appendix B: Integration coefficients for shim stack stiffness

The following coefficients after Roark and Young [22] are used for the computation of linearized deflections at a radius r of a flat shim plate of outer radius a as a result of pressure or contact force loads at radius \(r_{0}\):

$$\begin{aligned} C_{8}&= \frac{1}{2} \left[ 1+\nu +\left( 1-\nu \right) \left( \frac{b}{a}\right) ^{2}\right] , \end{aligned}$$
(B1)
$$\begin{aligned} C_{9}&= \frac{b}{a} \left\{ \frac{1+\nu }{2}\ln {\frac{a}{b}}+\frac{1-\nu }{4}\left[ 1-\left( \frac{b}{a}\right) ^{2}\right] \right\} , \end{aligned}$$
(B2)
$$\begin{aligned} F_{2}&= \frac{1}{4} \left[ 1-\left( \frac{b}{r}\right) ^{2}\left( 1+2\ln \frac{r}{b}\right) \right] , \end{aligned}$$
(B3)
$$\begin{aligned} F_{3}&= \frac{b}{4r} \left\{ \left[ \left( \frac{b}{r}\right) ^{2}+1\right] \ln \frac{r}{b}+\left( \frac{b}{r}\right) ^{2}-1\right\} , \end{aligned}$$
(B4)
$$\begin{aligned} G_{3}&= \frac{r_{0}}{4r} \left\{ \left[ \left( \frac{r_{0}}{r}\right) ^{2}+1\right] \ln \frac{r}{r_{0}}+\left( \frac{r_{0}}{r}\right) ^2-1\right\} \left<r-r_{0}\right>^{0}, \end{aligned}$$
(B5)
$$\begin{aligned} G_{11}&= \frac{1}{64} \left\{ 1+4\left( \frac{r_{0}}{r}\right) ^2-5\left( \frac{r_{0}}{r}\right) ^4-4\left( \frac{r_{0}}{r}\right) ^2\right. \nonumber \\&\left. \left[ 2+\left( \frac{r_{0}}{r}\right) ^2\right] \ln \frac{r}{r_{0}}\right\} \left<r-r_{0}\right>^{0}, \end{aligned}$$
(B6)
$$\begin{aligned} L_{9}&= \frac{r_{0}}{a} \left\{ \frac{1+\nu }{2}\ln {\frac{a}{r_{0}}}+\frac{1-\nu }{4}\left[ 1-\left( \frac{r_{0}}{a}\right) ^{2}\right] \right\} , \end{aligned}$$
(B7)
$$\begin{aligned} L_{17}&= \frac{1}{4} \left\{ 1-\frac{1-\nu }{4}\left[ 1-\left( \frac{r_{0}}{a}\right) ^4\right] -\left( \frac{r_{0}}{a}\right) ^2\right. \nonumber \\&\left. \left[ 1+\left( 1+\nu \right) \ln {\frac{a}{r_{0}}}\right] \right\} . \end{aligned}$$
(B8)

Here, the expression \(\left<r-r_{0}\right>^{0}\) is equivalent to \(\left( r-r_{0}\right) \forall \, r>r_{0}\) and \(0 \,\forall \, r \le r_{0}\).

Table 2 Properties of the shim stacks and valves
Table 3 Properties of the damper mineral oil

Appendix C: Modelling of crossover shim contact

For the case of an introduced crossover shim at position m within a stack, the shim deflections and stiffness are initially computed in the same way as presented in Sect. 3.2.3 until contact is reached between the adjacent layers of the crossover. At this point the difference between the displacements of neighbouring shims equals the total thickness of the crossover, \(\delta _{m+1}-\delta _{m-1}=t_{m}\), and the new contact force \(w_{a}\) needs to be taken into account:

$$\begin{aligned}&\delta _{1}\left( w_{1}\right) = \epsilon _{2}\left( w_{1}\right) +\epsilon _{2}\left( w_{2}\right) , \end{aligned}$$
(C1)
$$\begin{aligned}&\delta _{2}\left( w_{1}\right) + \delta _{2}\left( w_{2}\right) = \epsilon _{3}\left( w_{2}\right) +\epsilon _{3}\left( w_{3}\right) , \end{aligned}$$
(C2)
$$\begin{aligned}&\vdots \nonumber \\&\delta _{m-2}\left( w_{m-3}\right) + \delta _{m-2}\left( w_{m-2}\right) =\epsilon _{m-1}\left( w_{m-2}\right) \nonumber \\&+\epsilon _{m-1}\left( w_{m-1}\right) \nonumber \\&+\epsilon _{m-1}\left( w_{a}\right) , \end{aligned}$$
(C3)
$$\begin{aligned}&\epsilon _{m-1}^{m}\left( w_{m-2}\right) +\epsilon _{m-1}^{m}\left( w_{m-1}\right) +\epsilon _{m-1}^{m}\left( w_{a}\right) \nonumber \\&= \delta _{m}\left( w_{m-1}\right) + \delta _{m}\left( w_{m}\right) , \end{aligned}$$
(C4)
$$\begin{aligned}&\delta _{m}\left( w_{m-1}\right) + \delta _{m}\left( w_{m}\right) = \epsilon _{m+1}\left( w_{m}\right) +\epsilon _{m+1}\left( w_{m+1}\right) \nonumber \\&\quad +\epsilon _{m+1}\left( w_{a}\right) , \end{aligned}$$
(C5)
$$\begin{aligned}&\delta _{m+1}\left( w_{m}\right) + \delta _{m+1}\left( w_{m+1}\right) +\delta _{m+1}\left( w_{a}\right) \nonumber \\&=\epsilon _{m+2}\left( w_{m+1}\right) +\epsilon _{m+2}\left( w_{m+2}\right) , \end{aligned}$$
(C6)
$$\begin{aligned}&\delta _{m+2}\left( w_{m+1}\right) + \delta _{m+2}\left( w_{m+2}\right) \nonumber \\&=\epsilon _{m+3}\left( w_{m+2}\right) +\epsilon _{m+3}\left( w_{m+3}\right) , \end{aligned}$$
(C7)
$$\begin{aligned}&\vdots \nonumber \\&\delta _{n-2}\left( w_{n-3}\right) + \delta _{n-2}\left( w_{n-2}\right) = \epsilon _{n-1}\left( w_{n-2}\right) \nonumber \\&+\epsilon _{n-1}\left( w_{n-1}\right) , \end{aligned}$$
(C8)
$$\begin{aligned}&\delta _{n-1}\left( w_{n-2}\right) + \delta _{n-1}\left( w_{n-1}\right) = \epsilon _{n}\left( w_{n-1}\right) \nonumber \\&+\epsilon _{n}\left( q\right) , \end{aligned}$$
(C9)
$$\begin{aligned}&\delta _{m+1}\left( w_{m}\right) + \delta _{m+1}\left( w_{m+1}\right) +\delta _{m+1}\left( w_{a}\right) \nonumber \\&=\epsilon _{m-1}^{m+1}\left( w_{m-2}\right) +\epsilon _{m-1}^{m+1}\left( w_{m-1}\right) \nonumber \\&\quad + \epsilon _{m-1}^{m+1}\left( w_{a}\right) + t_{m}. \end{aligned}$$
(C10)

Here, the notation \(\epsilon _{m-1}^{m}\) stands for the intermediate deflection of the shim \(\left( m-1 \right) \) before the crossover at the same radius of the crossover shim m. Eq. (C10) is added to the original equation system to account for the additional contact force \(w_{a}\). Using Eq. (C1)–(C10), the matrix \({\hat{A}}\) of linear coefficients is built up as in Eq. (36) for the non-crossover case and the algebraic system \({\hat{A}}\cdot \vec {w}=\vec {b}\) with

$$\begin{aligned} \vec {w}&= \left[ {\begin{array}{c} w_{1} \\ w_{2} \\ \vdots \\ w_{n-1} \\ w_{a} \\ \end{array} } \right] , \end{aligned}$$
(C11)
$$\begin{aligned} \vec {b}&= \left[ {\begin{array}{c} 0 \\ \vdots \\ 0 \\ \epsilon _{n}\left( q\right) \\ -t_{m} \\ \end{array} } \right] . \end{aligned}$$
(C12)

is solved for all unknown forces \(\vec {w}\). The above approach can be readily generalized for multiple additional contact forces or intermediate crossovers as shown in Fig. 5.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schickhofer, L. A universal nonlinear model for the dynamic behaviour of shock absorbers. Nonlinear Dyn 111, 1071–1093 (2023). https://doi.org/10.1007/s11071-022-07896-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07896-4

Keywords

Navigation