Skip to main content

Oscillations of a Vehicle Equipped with Hydraulic Shock Absorbers

  • Conference paper
  • First Online:
Acoustics and Vibration of Mechanical Structures – AVMS-2021

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 274))

  • 283 Accesses

Abstract

In the present paper, the nonlinear oscillations of the suspension of a vehicle equipped with hydraulic shock absorbers is studied using Optimal Auxiliary Functions Method (OAFM). By neglecting the elasticity of the tires and the coupling between the solutions of the front and rear axles, the vibrations of the vehicle that are symmetrical with respect to the longitudinal axis may be studied on a single degree of freedom. Analytical solutions and natural frequencies of the system are calculated. Our results obtained through this procedure are in very good agreement with numerical results, which provides the accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magnus, K.: Schwingungen. Teubner, Stuttgart (1997)

    Book  Google Scholar 

  2. Andronov, A.A., Vitt, A.A., Haikin, S.E.: Teorija Kolebanij. Nauka, Moskow (1981)

    Google Scholar 

  3. Dincă, F., Teodosiu, C.: Nonlinear and random vibrations. Academic Press (1973)

    Google Scholar 

  4. Cvetičanin, L.: Oscillator with strong quadratic damping force. Publications de l’Institut Mathématique, 119–150 (2009)

    Google Scholar 

  5. Wallashek, J.: Dynamics of nonlinear automobile shock-absorbers. Int. J. Nonlinear Mech. 2, 299–308 (1990)

    Article  Google Scholar 

  6. Fay, T.H.: Quadratic damping. Int. J. Math. Educ. Sci. Technol. 4316, 789–803 (2012)

    Google Scholar 

  7. Zhu, J.W.: A new exact solutions of a damped quadratic nonlinear oscillators. Appl. Math. Model. 38, 5986–5993 (2014)

    Article  MathSciNet  Google Scholar 

  8. Elliott. S.J., Tehrani, M.G., Langley, R.S.: Nonlinear damping of quasi-linear modeling. Philos. Trans., R. Soc. A. 373. https://doi.org/10.1098/rsta2014.0402 (2014)

  9. Zhang, C.H., Zhao, J.H., Wang, Y.: Effect of quadratic damping in a shock isolation. J. Skip Mech. 18(7), 834–840 (2014)

    Google Scholar 

  10. Pandey, A.,Ghose Choudhury, A., Guha, P.: Quadratically damped oscillation with nonlinear restoring force. arxiv:1610.07821v1[nlin.C.D,J.] (2016)

    Google Scholar 

  11. Guo, F.: Global analysis of a Liénard system with quadratic damping. Discrete Dynamics in Nature and Society. Article ID1249620 (2018)

    Google Scholar 

  12. Fangnou, R., Ainamon, A.V., Monwanon, C.H., Chabi Orou, J.B.: Nonlinear dynamic of the quadratic damping Helmholtz oscillator. Complexity. Article 10:8822534, 17 pages (2020)

    Google Scholar 

  13. Demina, M.V., Kuznetsov, N.S.: Liouville Integrability of the Poincare Problem for nonlinear oscillator with quadratic damping and polynomial forces. J. Dyn. Contr. Syst. (2020). https://doi.org/10.1007/s10883-020-09513-2

    Article  Google Scholar 

  14. Marinca, V., Herişanu, N., Marinca, B.: Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems, Springer (2021)

    Google Scholar 

  15. Marinca, B., Marinca, V.: Some exact solution of MHD flow and heat transfer to modified second grade fluid with variable thermal conductivity in the presence of thermal radiation and heat generation/absorption. Comput. Math. Appl. 76, 1515–1524 (2018)

    Article  MathSciNet  Google Scholar 

  16. Marinca, V., Marinca, B.: Optimal auxiliary functions method for nonlinear thin film flow of a third grade fluid on a moving belt. Proc. Roman. Acad. Series A 19, 575–580 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Marinca, V., Herişanu, N., Bota, C., Marinca, B.: An optimal homotopy asymptotic method applied to the steady flow of a fourth grade fluid past a porous plate. Appl. Math. Lett. 22, 245–251 (2009)

    Article  MathSciNet  Google Scholar 

  18. Marinca, V., Herişanu, N.: Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches. Spinger (2011)

    Google Scholar 

  19. Marinca, B., Marinca, V., Bogdan, C.: Dynamics of SEIR epidemic model by optimal auxiliary functions method. Chaos, Solut. Fractals 14, 110949 (2021)

    Google Scholar 

  20. Herişanu, N., Marinca, V.: An efficient analytical approach to investigate the dynamics of a misaligned multirotor system. Mathematics 8. https://doi.org/10.3390/math8071983 (2020)

  21. Marinca, V., Herişanu, N.: Construction of analytic solution to axisymmetric flow and heat transfer on a moving cylinder. Symmetry 12. https://doi.org/10.3390/sym12081335 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Marinca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marinca, B., Tudor, E. (2022). Oscillations of a Vehicle Equipped with Hydraulic Shock Absorbers. In: Herisanu, N., Marinca, V. (eds) Acoustics and Vibration of Mechanical Structures – AVMS-2021. Springer Proceedings in Physics, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-030-96787-1_12

Download citation

Publish with us

Policies and ethics