Skip to main content
Log in

Stabilization of two-dimensional nonlinear systems through barrier-function-based integral sliding-mode control: application to a magnetic levitation system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The sliding-mode control (SMC) has been used successfully to stabilize nonlinear systems, yet a side effect of SMC is chattering, an undesired phenomenon. Researchers have then introduced the so-called integral-type approach to diminish chattering. Additional studies have shown that SMC with the so-called barrier function can drive the system state to a region close to the origin. The main contribution of this paper is to join both setups in the context of SMC, i.e., integral term and barrier function. We show that SMC with both integral term and barrier function can be used to track any given trajectory while ensuring both stability and chattering-free performance. The potential of this novel control for applications is illustrated through real-time experiments performed on a magnetic levitation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data that support this study and all the data collected during the experiments are freely available under request.

References

  1. Nikravesh, S.K.Y.: Nonlinear Systems Stability Analysis: Lyapunov-Based Approach. CRC Press, Boca Raton (2018)

    Book  MATH  Google Scholar 

  2. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall Inc., Upper Saddle River (2002)

    MATH  Google Scholar 

  3. Goriely, A., Hyde, C.: Necessary and sufficient conditions for finite time singularities in ordinary differential equations. J. Differ. Equ. 161(2), 422–448 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Oza, H.B., Orlov, Y.V., Spurgeon, S.K.: Continuous uniform finite time stabilization of planar controllable systems. SIAM J. Control Optim. 53(3), 1154–1181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdelrahim, M., Postoyan, R., Daafouz, J., Nesić, D.: Robust event-triggered output feedback controllers for nonlinear systems. Automatica 75, 96–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Freeman, R., Kokotovic, P.V.: Robust Nonlinear Control Design: State-Space and Lyapunov Techniques. Springer Science & Business Media, New York (2008)

    MATH  Google Scholar 

  7. Liberzon, D., Hespanha, J.P.: Stabilization of nonlinear systems with limited information feedback. IEEE Trans. Autom. Control 50(6), 910–915 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Omran, H., Hetel, L., Petreczky, M., Richard, J.P., Lamnabhi-Lagarrigue, F.: Stability analysis of some classes of input-affine nonlinear systems with aperiodic sampled-data control. Automatica 70, 266–274 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, W., Hung, J.: Variable structure control of nonlinear systems: a new approach. IEEE Trans. Ind. Electron. 40(1), 45–55 (1993)

    Article  Google Scholar 

  10. Sabanovic, A.: Variable structure systems with sliding modes in motion control: a survey. IEEE Trans. Ind. Inform. 7(2), 212–223 (2011)

    Article  Google Scholar 

  11. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer Science & Business Media, New York (2013)

    Google Scholar 

  12. Rath, J.J., Defoort, M., Sentouh, C., Karimi, H.R., Veluvolu, K.C.: Output-constrained robust sliding mode based nonlinear active suspension control. IEEE Trans. Ind. Electron. 67(12), 10652–10662 (2020)

    Article  Google Scholar 

  13. Vargas, A.N., Montezuma, M.A.F., Liu, X., Xu, L., Yu, X.: Sliding-mode control for stabilizing high-order stochastic systems: application to one-degree-of-freedom aerial device. IEEE Trans. Syst. Man Cybern. Syst. 50(11), 4318–4325 (2020)

    Article  Google Scholar 

  14. Colombo, L., Corradini, M., Ippoliti, G., Orlando, G.: Pitch angle control of a wind turbine operating above the rated wind speed: a sliding mode control approach. ISA Transactions 96, 95–102 (2020)

    Article  Google Scholar 

  15. Khan, A.H., Li, S.: Sliding mode control with PID sliding surface for active vibration damping of pneumatically actuated soft robots. IEEE Access 8, 88793–88800 (2020). https://doi.org/10.1109/ACCESS.2020.2992997

    Article  Google Scholar 

  16. Wang, J., Zhao, L., Yu, L.: Adaptive terminal sliding mode control for magnetic levitation systems with enhanced disturbance compensation. IEEE Trans. Ind. Electron. 68(1), 756–766 (2021)

    Article  Google Scholar 

  17. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birkhauser-Springer, New York (2014)

    Book  Google Scholar 

  18. Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. In: Proceedings of 35th IEEE Conference on Decision and Control, vol. 4, pp. 4591–4596 (1996)

  19. Das, M., Mahanta, C.: Optimal second order sliding mode control for nonlinear uncertain systems. ISA Transactions 53(4), 1191–1198 (2014)

    Article  Google Scholar 

  20. Ferrara, A., Incremona, G.P.: Design of an integral suboptimal second-order sliding mode controller for the robust motion control of robot manipulators. IEEE Trans. Control Syst. Technol. 23(6), 2316–2325 (2015)

    Article  Google Scholar 

  21. Pan, Y., Yang, C., Pan, L., Yu, H.: Integral sliding mode control: performance, modification, and improvement. IEEE Trans. Ind. Inform. 14(7), 3087–3096 (2018)

    Article  Google Scholar 

  22. Ding, S., Mei, K., Li, S.: A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Trans. Autom. Control 64(6), 2545–2552 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mu, C., He, H.: Dynamic behavior of terminal sliding mode control. IEEE Trans. Ind. Electron. 65(4), 3480–3490 (2018)

    Article  Google Scholar 

  24. Laghrouche, S., Harmouche, M., Chitour, Y., Obeid, H., Fridman, L.M.: Barrier function-based adaptive higher order sliding mode controllers. Automatica 123, 109355 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Obeid, H., Fridman, L.M., Laghrouche, S., Harmouche, M.: Barrier function-based adaptive sliding mode control. Automatica 93, 540–544 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shao, K., Zheng, J., Wang, H., Wang, X., Lu, R., Man, Z.: Tracking control of a linear motor positioner based on barrier function adaptive sliding mode. IEEE Trans. Ind. Inform. (2021). https://doi.org/10.1109/TII.2021.3057832

    Article  Google Scholar 

  27. Liu, Z., Pan, H.: Barrier function-based adaptive sliding-mode control for application to vehicle suspension. IEEE Trans. Transp. Electr. (2020). https://doi.org/10.1109/TTE.2020.3043581

    Article  Google Scholar 

  28. Abd, A.F., Al-Samarraie, S.A.: Integral sliding mode control based on barrier function for servo actuator with friction. Eng. Technol. J. 39(2), 248–259 (2021)

    Article  Google Scholar 

  29. Obeid, H., Fridman, L., Laghrouche, S., Harmouche, M.: Barrier function-based adaptive integral sliding mode control. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 5946–5950 (2018). https://doi.org/10.1109/CDC.2018.8619334

  30. Takács, G., Mihalík, J., Mikuláš, E., Gulan, M.: Magnetoshield: prototype of a low-cost magnetic levitation device for control education. In: IEEE Global Engineering Education Conference (EDUCON), pp. 1516–1525 (2020). https://doi.org/10.1109/EDUCON45650.2020.9125091

  31. Pujol-Vázquez, G., Vargas, A.N., Mobayen, S., Acho, L.: Semi-active magnetic levitation system for education. Appl. Sci. 11, 5330 (2021). https://doi.org/10.3390/app11125330

    Article  Google Scholar 

  32. Zhang, Z., Gao, T., Qin, Y., Yang, J., Zhou, F.: Numerical study for zero-power Maglev system inspired by undergraduate project kits. IEEE Access 8, 90316–90323 (2020). https://doi.org/10.1109/ACCESS.2020.2994128

    Article  Google Scholar 

  33. Sathiyavathi, S.: Design of sliding mode controller for magnetic levitation system. Comput. Electr. Eng. 78, 184–203 (2019)

    Article  Google Scholar 

  34. Muresan, C.I., Ionescu, C., Folea, S., De Keyser, R.: Fractional order control of unstable processes: the magnetic levitation study case. Nonlinear Dyn. 80(4), 1761–1772 (2015)

    Article  Google Scholar 

  35. Roy, P., Roy, B.K.: Sliding mode control versus fractional-order sliding mode control: applied to a magnetic levitation system. J. Control Autom. Electr. Syst. 31, 597–606 (2020). https://doi.org/10.1007/s40313-020-00587-8

    Article  Google Scholar 

  36. Ginoya, D., Gutte, C.M., Shendge, P., Phadke, S.: State-and-disturbance-observer-based sliding mode control of magnetic levitation systems. Trans. Inst. Meas. Control 38(6), 751–763 (2016)

    Article  Google Scholar 

  37. Shieh, H.J., Siao, J.H., Liu, Y.C.: A robust optimal sliding-mode control approach for magnetic levitation systems. Asian J. Control 12(4), 480–487 (2010)

    MathSciNet  Google Scholar 

  38. Sun, G., Ma, Z.: Practical tracking control of linear motor with adaptive fractional order terminal sliding mode control. IEEE/ASME Trans. Mechatron. 22(6), 2643–2653 (2017). https://doi.org/10.1109/TMECH.2017.2766279

    Article  Google Scholar 

  39. Cao, Y., Chen, X.B.: An output-tracking-based discrete PID-sliding mode control for MIMO systems. IEEE/ASME Trans. Mechatron. 19(4), 1183–1194 (2014). https://doi.org/10.1109/TMECH.2013.2275743

    Article  Google Scholar 

  40. Liu, Z., Pan, H.: Barrier function-based adaptive sliding mode control for application to vehicle suspensions. IEEE Trans. Transp. Electr. 7(3), 2023–2033 (2021). https://doi.org/10.1109/TTE.2020.3043581

    Article  Google Scholar 

  41. Mobayen, S., Alattas, K.A., Fekih, A., El-Sousy, F.F.M., Bakouri, M.: Barrier function-based adaptive nonsingular sliding mode control of disturbed nonlinear systems: A linear matrix inequality approach. Chaos Solitons Fractals 157, 111918 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rodrigues, V.H.P., Hsu, L., Oliveira, T.R., Fridman, L.: Adaptive sliding mode control with guaranteed performance based on monitoring and barrier functions. Int. J. Adapt. Control Signal Process. 36(6), 1252–1271 (2022)

    Article  MathSciNet  Google Scholar 

  43. Seeber, R., Horn, M.: Guaranteeing disturbance rejection and control signal continuity for the saturated super-twisting algorithm. IEEE Control Syst. Lett. 3(3), 715–720 (2019)

    Article  MathSciNet  Google Scholar 

  44. Baker, C.T.H., Makroglou, A., Short, E.: Regions of stability in the numerical treatment of Volterra integro-differential equations. SIAM J. Numer. Anal. 16(6), 890–910 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  45. Matthys, J.: A-Stable linear multistep methods for Volterra integro-differential equations. Numer. Math. 27(1), 85–94 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  46. Adil, H.M.M., Ahmed, S., Ahmad, I.: Control of MagLev system using super-twisting and integral backstepping sliding mode algorithm. IEEE Access 8, 51352–51362 (2020). https://doi.org/10.1109/ACCESS.2020.2980687

    Article  Google Scholar 

  47. Bidikli, B.: An observer-based adaptive control design for the maglev system. Trans. Inst. Meas. Control. 42(14), 2771–2786 (2020)

    Article  Google Scholar 

  48. Cheng, D.K.: Field and Wave Electromagnetics, 2nd edn. Pearson, Harlow, Essex, UK (2013)

    Google Scholar 

  49. Morales, R., Sira-Ramírez, H.: Trajectory tracking for the magnetic ball levitation system via exact feedforward linearisation and GPI control. Int. J. Control 83(6), 1155–1166 (2010). https://doi.org/10.1080/00207171003642196

  50. Meystre, P., Sargent, M.: Classical Electromagnetic Fields. Elements of Quantum Optics. Springer, Berlin (1999). https://doi.org/10.1007/978-3-662-03877-2-1

  51. Fuh, C.C., Tsai, H.H.: Adaptive parameter identification of servo control systems with noise and high-frequency uncertainties. Mech. Syst. Signal Process 21, 1437–1451 (2007)

  52. Chiu, C.S.: Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems. Automatica 48, 316–326 (2012). https://doi.org/10.1016/j.automatica.2011.08.055

Download references

Funding

Research supported in part by the Brazilian agency CNPq Grant 305158/2017-1; 305998/2020-0; 421486/2016-3.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Leonardo Acho and Pujol-Vázquez performed material preparation, data collection, and analysis. All authors wrote the manuscript, and all authors commented on previous versions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Alessandro N. Vargas.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

From (1) and (2), we have

$$\begin{aligned} {\dot{e}}(t)={\dot{x}}_{1r}(t)-x_2(t), \quad \forall t\ge 0. \end{aligned}$$
(36)

Taking the derivative with respect to the time on both sides of (36), and substituting (1) into the corresponding expression, we obtain (for all \(t>0\))

$$\begin{aligned} \begin{array}{l} \ddot{e}(t)=\ddot{x}_{1r}(t)-f(t)-b(t)u(t)-w(t),\\ \dddot{e}(t)=\dddot{x}_{1r}(t)-{\dot{f}}(t)-{\dot{b}}(t)u(t)-b(t){\dot{u}}(t)-{\dot{w}}(t). \end{array} \end{aligned}$$
(37)

Now, recall from (3) that

$$\begin{aligned} s(t)=c_1e(t)+ {\dot{e}}(t),\quad \forall t > 0, \end{aligned}$$
(38)

and from (5) that

$$\begin{aligned} \sigma (t)={\dot{s}}(t)+\beta s(t)+\alpha \int _0^t s(\tau ) d\tau , \quad \forall t> 0. \end{aligned}$$
(39)

As a result,

$$\begin{aligned} {\dot{\sigma }}(t)&=\ddot{s}(t)+\beta {\dot{s}}(t)+\alpha s(t) \nonumber \\&=c_1\ddot{e}(t)+\dddot{e}(t)+\beta \left( c_1{\dot{e}}(t)+ \ddot{e}(t) \right) + \alpha s(t) . \end{aligned}$$
(40)

Substituting (37) into (40) yields (11). This argument completes the proof. \(\square \)

1.2 Summary of the SMC control approach given in [52]

This section presents the SMC control method, which is borrowed from [52] and adapted to our MagLev device. In [52], the uncertainty part of the system is bounded by a known positive function, which is not available in our approach. Therefore, we suppose that we know an upper bound of the un-modeled part of the MagLev system. It then follows that the result in [52, Thm. 1] can be written as

$$\begin{aligned} \left\{ \begin{array}{l} u(t)=G^{-1}\left( x_{2d}-x_{1r}-(K+\delta )|\alpha {\dot{e}}_I|\frac{s}{|s|}-\delta \right) \\ s=e(t)+\alpha e_I(t)\\ {\dot{e}}_I(t)=e^{\frac{q}{p}}(t), \end{array}\right. \end{aligned}$$
(41)

with \(p>q>0\), \(\delta >0\) and \(K>0\) control parameters to be tuned. The function G depends on the disturbance upper bound.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mobayen, S., Vargas, A.N., Acho, L. et al. Stabilization of two-dimensional nonlinear systems through barrier-function-based integral sliding-mode control: application to a magnetic levitation system. Nonlinear Dyn 111, 1343–1354 (2023). https://doi.org/10.1007/s11071-022-07890-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07890-w

Keywords

Navigation