Skip to main content
Log in

Nonlinear dynamic modelling and analysis of multiple thin plates connected by long hinges

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamical modelling method and nonlinear characteristics of the multi-plate structure are investigated in this paper. The structure presents as a chain, which consists of multiple plates and adjacent plates are connected by a long hinge. The length of the hinge should be considered therefore the boundary conditions of each plate are discontinuous. A novel constraining method based on the power series polynomial is proposed to establish the mathematical model of the connection and constraint for the plate with the local restrained boundary. The characteristic equation of the multi-plate structure is derived by using the Rayleigh–Ritz method and then natural frequencies are obtained. The discrete nonlinear dynamical equation is established by using the obtained linear modal shapes. By comparing natural characteristics with the result of the finite element model, the correctness of the present model and the validation of the proposed method are verified. The modal analysis shows that the complex frequency phenomena are due to the different influence of the long hinge on symmetric and antisymmetric modes of each plate. The parameter analysis reveals nonlinear characteristics of the whole multi-plate structure. Numerical results demonstrate that the proposed constraining method can impose constraints on interval discontinuous boundaries of the plate, which goes beyond the traditional Lagrange multiplier method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used to support this study will be provided upon request.

References

  1. Wang, I., Gibbs, S.C., Dowell, E.H.: Aeroelastic model of multisegmented folding wings: theory and experiment. J. Aircr. 49(3), 911–921 (2012)

    Article  Google Scholar 

  2. Mishra, N., Singh, S.P.: Determination of modes of vibration for accurate modelling of the flexibility effects on dynamics of a two link flexible manipulator. Int. J. Non Linear Mech. 141, 103943 (2022)

    Article  Google Scholar 

  3. Li, H.-Q., Duan, L.-C., Liu, X.-F., Cai, G.-P.: Deployment and control of flexible solar array system considering joint friction. Multibody Sys. Dyn. 39(3), 249–265 (2017)

    Article  MathSciNet  Google Scholar 

  4. Awrejcewicz, J., Krysko, A.V., Zhigalov, M., Saltykova, O., Krysko, V.: Chaotic vibrations in flexible multi-layered bernoulli-euler and timoshenko type beams. Latin Am. J. Solids Struct. 5, 319–363 (2008)

    Google Scholar 

  5. Awrejcewicz, J., Krysko, V.A.: Feigenbaum scenario exhibited by thin plate dynamics. Nonlinear Dyn. 24(4), 373–398 (2001)

    Article  Google Scholar 

  6. Awrejcewicz, J., Krysko, V.A., Krysko, A.V.: Spatio-temporal chaos and solitons exhibited by von kÁrmÁn model. Int. J. Bifurcation Chaos 12(07), 1465–1513 (2002)

    Article  Google Scholar 

  7. Krysko, A.V., Awrejcewicz, J., Papkova, I.V., Krysko, V.A.: Routes to chaos in continuous mechanical systems: Part 2 modelling transitions from regular to chaotic dynamics. Chaos Solitons Fract. 45(6), 709–720 (2012)

    Article  Google Scholar 

  8. Chen, J., Hu, W.-H., Li, Q.-S.: Nonlinear dynamics of a foldable multibeam structure with one to two internal resonances. Int. J. Mech. Sci. 150, 369–378 (2019)

    Article  Google Scholar 

  9. Kumar, P., Pratiher, B.: Modal characterization with nonlinear behaviors of a two-link flexible manipulator. Arch. Appl. Mech. 89(7), 1201–1220 (2019)

    Article  Google Scholar 

  10. Hu, W., Gao, Y., Yang, B.: Semi-active vibration control of two flexible plates using an innovative joint mechanism. Mech. Syst. Signal Process. 130, 565–584 (2019)

    Article  Google Scholar 

  11. Kandil, A.: Internal resonances among the first three modes of a hinged–hinged beam with cubic and quintic nonlinearities. Int. J. Non Linear Mech. 127, 103592 (2020)

    Article  Google Scholar 

  12. Chen, X., Jiang, S., Wang, T.: Dynamic modeling and analysis of multi-link mechanism considering lubrication clearance and flexible components. Nonlinear Dyn. 107(4), 3365–3383 (2022)

    Article  Google Scholar 

  13. Xing, W.C., Wang, Y.Q.: Vibration characteristics analysis of rigid-flexible spacecraft with double-direction hinged solar arrays. Acta Astronaut. 193, 454–468 (2022)

    Article  Google Scholar 

  14. Zhang, W., Lv, S., Ni, Y.: Parametric aeroelastic modeling based on component modal synthesis and stability analysis for horizontally folding wing with hinge joints. Nonlinear Dyn. 92(2), 169–179 (2018)

    Article  Google Scholar 

  15. Vak, A., Ja, B., Ivp, A., Oasa, C., Avkd, C.: On reliability of chaotic dynamics of two euler–bernoulli beams with a small clearance. Int. J. Non Linear Mech. 104, 8–18 (2018)

    Article  Google Scholar 

  16. Awrejcewicz, J., Krysko, V.A., Zhigalov, M.V., Krysko, A.V.: Contact interaction of two rectangular plates made from different materials with an account of physical nonlinearity. Nonlinear Dyn. 91(2), 1191–1211 (2018)

    Article  Google Scholar 

  17. Awrejcewicz, J., Krysko, V.A., Yakovleva, T.V., Pavlov, S.P., Krysko, V.A.: Nonlinear dynamics of contact interaction of a size-dependent plate supported by a size-dependent beam. Chaos Interdiscip. J. Nonlinear Sci. 28(5), 053102 (2018)

    Article  MathSciNet  Google Scholar 

  18. Krysko, V.A., Awrejcewicz, J., Dobriyan, V., Papkova, I.V., Krysko, V.A.: Size-dependent parameter cancels chaotic vibrations of flexible shallow nano-shells. J. Sound Vib. 446, 374–386 (2019)

    Article  Google Scholar 

  19. Teng, M.W., Wang, Y.Q.: Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin Walled Struct. 164, 107799 (2021)

    Article  Google Scholar 

  20. Freydin, M., Dowell, E.H., Spottswood, S.M., Perez, R.A.: Nonlinear dynamics and flutter of plate and cavity in response to supersonic wind tunnel start. Nonlinear Dyn. 103(4), 3019–3036 (2021)

    Article  Google Scholar 

  21. Hao, R.-B., Lu, Z.-Q., Ding, H., Chen, L.-Q.: A nonlinear vibration isolator supported on a flexible plate: analysis and experiment. Nonlinear Dyn. 108(2), 941–958 (2022)

    Article  Google Scholar 

  22. Zhang, K., Pan, J., Lin, T.R.: Vibration of rectangular plates stiffened by orthogonal beams. J. Sound Vib. 513, 116424 (2021)

    Article  Google Scholar 

  23. Li, Z., Zhong, R., Wang, Q., Qin, B., Yu, H.: The thermal vibration characteristics of the functionally graded porous stepped cylindrical shell by using characteristic orthogonal polynomials. Int. J. Mech. Sci. 182, 105779 (2020)

    Article  Google Scholar 

  24. He, D., Liu, T., Qin, B., Wang, Q., Zhai, Z., Shi, D.: In-plane modal studies of arbitrary laminated triangular plates with elastic boundary constraints by the chebyshev-ritz approach. Compos. Struct. 271, 114138 (2021)

    Article  Google Scholar 

  25. Cao, D., Wang, L., Wei, J., Nie, Y.: Natural frequencies and global mode functions for flexible jointed-panel structures. J. Aerosp. Eng. 33(4), 04020018 (2020)

    Article  Google Scholar 

  26. He, G., Cao, D., Wei, J., Cao, Y., Chen, Z.: Study on analytical global modes for a multi-panel structure connected with flexible hinges. Appl. Math. Model. 91, 1081–1099 (2021)

    Article  MathSciNet  Google Scholar 

  27. Cao, Y., Cao, D., He, G., Ge, X., Hao, Y.: Modelling and vibration analysis for the multi-plate structure connected by nonlinear hinges. J. Sound Vib. 492, 115809 (2021)

    Article  Google Scholar 

  28. Cao, Y., Cao, D., He, G., Hao, Y., Ge, X., Liu, L.: Thermal–structural coupling analysis for multiple honeycomb plates connected by hinges. Int. J. Struct. Stab. Dyn. (2022). https://doi.org/10.1142/s0219455422500936,2250093

    Article  MathSciNet  Google Scholar 

  29. Li, R., Wang, H., Zheng, X., Xiong, S., Hu, Z., Yan, X., Xiao, Z., Xu, H., Li, P.: New analytic buckling solutions of rectangular thin plates with two free adjacent edges by the symplectic superposition method. Eur. J. Mech. A. Solids 76, 247–262 (2019)

    Article  MathSciNet  Google Scholar 

  30. Hu, Z., Zheng, X., An, D., Zhou, C., Yang, Y., Li, R.: New analytic buckling solutions of side-cracked rectangular thin plates by the symplectic superposition method. Int. J. Mech. Sci. 191, 106051 (2021)

    Article  Google Scholar 

  31. Zhou, C., An, D., Zhou, J., Wang, Z., Li, R.: On new buckling solutions of moderately thick rectangular plates by the symplectic superposition method within the hamiltonian-system framework. Appl. Math. Model. 94, 226–241 (2021)

    Article  MathSciNet  Google Scholar 

  32. Zhou, D., Cheung, Y.K., Lo, S.H., Au, F.T.K.: Three-dimensional vibration analysis of rectangular plates with mixed boundary conditions. J. Appl. Mech. 72(2), 227–236 (2005)

    Article  Google Scholar 

  33. Cai, D., Wang, X., Zhou, G.: Static and free vibration analysis of thin arbitrary-shaped triangular plates under various boundary and internal supports. Thin Walled Struct. 162, 107592 (2021)

    Article  Google Scholar 

  34. Udayakumar, B., Gopal, K.V.N.: Analysis of layered panels with mixed edge boundary conditions using state space differential quadrature method. Compos. Struct. 274, 114355 (2021)

    Article  Google Scholar 

  35. Baghaee, M., Farrokhabadi, A., Jafari-Talookolaei, R.-A.: A solution method based on lagrange multipliers and legendre polynomial series for free vibration analysis of laminated plates sandwiched by two mfc layers. J. Sound Vib. 447, 42–60 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by the National Natural Science Foundation of China (Grant No. 12002058 and No. 11732005), Qin Xin Talents Cultivation Program, Beijing Information Science and Technology University (QXTCP C202101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuteng Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The detailed expression of the elastic potential energy Eq. (4) is written as

$$\begin{aligned} U_{total} &= \frac{1}{2}\sum\limits_{i = 1}^{3} {\int_{ - L}^{L} {\int_{ - b}^{b} {\left\{ {Q_{11} \left[ {2h\left( {\frac{{\partial u_{i} }}{{\partial x_{i} }}} \right)^{2} + \frac{{2h^{3} }}{3}\left( {\frac{{\partial^{2} w_{i} }}{{\partial x_{i}^{2} }}} \right)^{2} + 2h\frac{{\partial u_{i} }}{{\partial x_{i} }}\left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{2} + \frac{h}{2}\left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{4} } \right]} \right.} } } \\ &\quad + Q_{12} \left[ {4h\left( {\frac{{\partial u_{i} }}{{\partial x_{i} }}} \right)\left( {\frac{{\partial v_{i} }}{{\partial y_{i} }}} \right) + \frac{{4h^{3} }}{3}\left( {\frac{{\partial^{2} w_{i} }}{{\partial x_{i}^{2} }}} \right)\left( {\frac{{\partial^{2} w_{i} }}{{\partial y_{i}^{2} }}} \right) + h\left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{2} \left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{2} } \right]\\ &\quad \left. { + 2h\frac{{\partial u_{i} }}{{\partial x_{i} }}\left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{2} + 2h\frac{{\partial v_{i} }}{{\partial y_{i} }}\left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{2} } \right]\\ &\quad + Q_{22} \left[ {2h\left( {\frac{{\partial v_{i} }}{{\partial y_{i} }}} \right)^{2} + \frac{{2h^{3} }}{3}\left( {\frac{{\partial^{2} w_{i} }}{{\partial y_{i}^{2} }}} \right)^{2} + 2h\frac{{\partial v_{i} }}{{\partial y_{i} }}\left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{2} + \frac{h}{2}\left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{4} } \right] \\ &\quad + Q_{66} \left[ {2h\left( {\frac{{\partial u_{i} }}{{\partial y_{i} }}} \right)^{2} + 2h\left( {\frac{{\partial v_{i} }}{{\partial x_{i} }}} \right)^{2} + 4h\left( {\frac{{\partial u_{i} }}{{\partial y_{i} }}} \right)\left( {\frac{{\partial v_{i} }}{{\partial x_{i} }}} \right) + \frac{{8h^{3} }}{3}\left( {\frac{{\partial^{2} w_{i} }}{{\partial x_{i} \partial y_{i} }}} \right)^{2} } \right.\\ &\quad \left. {\left. { + 4h\frac{{\partial u_{i} }}{{\partial y_{i} }}\left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)\left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right) + 4h\frac{{\partial v_{i} }}{{\partial x_{i} }}\left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)\left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right) + 2h\left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{2} \left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{2} } \right]} \right\}{\text{d}}y_{i} {\text{d}}x_{i}\\ \quad + \frac{1}{2}k_{t} (\Delta \theta_{y01}^{2} + \Delta \theta_{y12}^{2} + \Delta \theta_{y23}^{2} ), \\ \end{aligned}$$
(A1)

The maximum values of energy expressions in Eq. (15) are given as

$$\begin{gathered} T_{\max } = \frac{1}{2}\omega^{2} \rho \sum\limits_{i = 1}^{3} {\int_{ - L}^{L} {\int_{ - b}^{b} {\left[ {H_{1} \left( {U_{i}^{2} + V_{i}^{2} + W_{i}^{2} } \right) + H_{2} \left( {\frac{{\partial W_{i} }}{{\partial x_{i} }}} \right)^{2} + H_{2} \left( {\frac{{\partial W_{i} }}{{\partial y_{i} }}} \right)^{2} } \right]{\text{d}}y_{i} {\text{d}}x_{i} } } } , \hfill \\ U_{\max } = \frac{1}{2}\sum\limits_{i = 1}^{3} {\int_{ - L}^{L} {\int_{ - b}^{b} {\left[ {Q_{11} H_{1} \left( {\frac{{\partial U_{i} }}{{\partial x_{i} }}} \right)^{2} + Q_{11} H_{2} \left( {\frac{{\partial^{2} W_{i} }}{{\partial x_{i}^{2} }}} \right)^{2} + 2Q_{12} H_{1} \left( {\frac{{\partial U_{i} }}{{\partial x_{i} }}} \right)\left( {\frac{{\partial V_{i} }}{{\partial y_{i} }}} \right)} \right.} } } \hfill \\ \, + 2Q_{12} H_{2} \left( {\frac{{\partial^{2} W_{i} }}{{\partial x_{i}^{2} }}} \right)\left( {\frac{{\partial^{2} W_{i} }}{{\partial y_{i}^{2} }}} \right) + Q_{22} H_{1} \left( {\frac{{\partial V_{i} }}{{\partial y_{i} }}} \right)^{2} + Q_{22} H_{2} \left( {\frac{{\partial^{2} W_{i} }}{{\partial y_{i}^{2} }}} \right)^{2} + Q_{66} H_{1} \left( {\frac{{\partial V_{i} }}{{\partial x_{i} }}} \right)^{2} \hfill \\ \, \left. { + Q_{66} H_{1} \left( {\frac{{\partial U_{i} }}{{\partial y_{i} }}} \right)^{2} { + }2Q_{66} H_{1} \left( {\frac{{\partial U_{i} }}{{\partial y_{i} }}} \right)\left( {\frac{{\partial V_{i} }}{{\partial x_{i} }}} \right) + 4Q_{66} H_{2} \left( {\frac{{\partial^{2} W_{i} }}{{\partial x_{i} \partial y_{i} }}} \right)^{2} } \right]{\text{d}}y_{i} {\text{d}}x_{i} \hfill \\ \, + \frac{1}{2}k_{t} (\Delta \theta_{y01}^{2} + \Delta \theta_{y12}^{2} + \Delta \theta_{y23}^{2} ), \hfill \\ \end{gathered}$$
(A2)

where

$$H_{1} = 2h, \, H_{2} = \frac{{2h^{3} }}{3}, \, H_{3} = h.$$
(A3)

The element detailed expression of the characteristic stiffness and mass matrices in Eq. (18) are given as

$$\begin{gathered} \left\{ {K_{ii}^{(u)} } \right\}_{rs} = H_{1} \int_{ - b}^{b} {\int_{ - L}^{L} {\left[ {Q_{11} \frac{{\partial^{2} \varphi_{{m_{r} }}^{(i)} }}{{\partial x^{2} }}\varphi_{{n_{r} }}^{(1)} \frac{{\partial^{2} \varphi_{{m_{s} }}^{(i)} }}{{\partial x^{2} }}\varphi_{{n_{s} }}^{(i)} + Q_{66} \frac{{\partial \varphi_{{m_{r} }}^{(i)} }}{\partial x}\frac{{\partial \varphi_{{n_{r} }}^{(i)} }}{\partial y}\frac{{\partial \varphi_{{m_{s} }}^{(i)} }}{\partial x}\frac{{\partial \varphi_{{n_{s} }}^{(i)} }}{\partial y}} \right]} } {\text{d}}x{\text{d}}y, \hfill \\ \left\{ {K_{ii}^{(v)} } \right\}_{rs} = H_{1} \int_{ - b}^{b} {\int_{ - L}^{L} {\left[ {Q_{22} \frac{{\partial^{2} \varphi_{{m_{r} }}^{(i)} }}{{\partial x^{2} }}\varphi_{{n_{r} }}^{(1)} \frac{{\partial^{2} \varphi_{{m_{s} }}^{(i)} }}{{\partial x^{2} }}\varphi_{{n_{s} }}^{(i)} + Q_{66} \frac{{\partial \varphi_{{m_{r} }}^{(i)} }}{\partial x}\frac{{\partial \varphi_{{n_{r} }}^{(i)} }}{\partial y}\frac{{\partial \varphi_{{m_{s} }}^{(i)} }}{\partial x}\frac{{\partial \varphi_{{n_{s} }}^{(i)} }}{\partial y}} \right]} } {\text{d}}x{\text{d}}y, \hfill \\ \left\{ {K_{ii}^{(uv)} } \right\}_{rs} = H_{1} \int_{ - b}^{b} {\int_{ - L}^{L} {\left[ {Q_{12} \frac{{\partial \varphi_{{m_{r} }}^{(i)} }}{\partial x}\varphi_{{n_{r} }}^{(1)} \varphi_{{m_{s} }}^{(i)} \frac{{\partial \varphi_{{n_{s} }}^{(i)} }}{\partial y} + Q_{66} \varphi_{{m_{r} }}^{(i)} \frac{{\partial \varphi_{{n_{r} }}^{(i)} }}{\partial y}\frac{{\partial \varphi_{{m_{s} }}^{(i)} }}{\partial x}\varphi_{{n_{s} }}^{(i)} } \right]} } {\text{d}}x{\text{d}}y, \hfill \\ \end{gathered}$$
(A4)
$$\begin{gathered} \left\{ {K_{ii}^{(w)} } \right\}_{rs} = H_{2} \int_{ - b}^{b} {\int_{ - L}^{L} {\left\{ {Q_{11} \frac{{\partial^{2} \varphi_{{m_{r} }}^{(i)} }}{{\partial x^{2} }}\varphi_{{n_{r} }}^{(i)} \frac{{\partial^{2} \varphi_{{m_{s} }}^{(i)} }}{{\partial x^{2} }}\varphi_{{n_{s} }}^{(i)} } \right.} } \hfill \\ + Q_{12} \left[ {\frac{{\partial^{2} \varphi_{{m_{r} }}^{(i)} }}{{\partial x^{2} }}\varphi_{{n_{r} }}^{(i)} \varphi_{{m_{s} }}^{(i)} \frac{{\partial^{2} \varphi_{{n_{s} }}^{(i)} }}{{\partial y^{2} }} + \varphi_{{m_{r} }}^{(i)} \frac{{\partial^{2} \varphi_{{n_{r} }}^{(i)} }}{{\partial y^{2} }}\frac{{\partial^{2} \varphi_{{m_{s} }}^{(i)} }}{{\partial x^{2} }}\varphi_{{n_{s} }}^{(i)} } \right] \hfill \\ \left. { + Q_{22} \varphi_{{m_{r} }}^{(i)} \frac{{\partial^{2} \varphi_{{n_{r} }}^{(i)} }}{{\partial y^{2} }}\varphi_{{m_{s} }}^{(i)} \frac{{\partial^{2} \varphi_{{n_{s} }}^{(i)} }}{{\partial y^{2} }}{\kern 1pt} + 4Q_{66} \frac{{\partial \varphi_{{m_{r} }}^{(i)} }}{\partial x}\frac{{\partial \varphi_{{n_{r} }}^{(i)} }}{\partial y}\frac{{\partial \varphi_{{m_{s} }}^{(i)} }}{\partial x}\frac{{\partial \varphi_{{n_{s} }}^{(i)} }}{\partial y}} \right\}{\text{d}}x{\text{d}}y \hfill \\ + k_{t} \left[ {\left. {\frac{{\partial \varphi_{{m_{r} }}^{(i)} }}{\partial x}\varphi_{{n_{r} }}^{(i)} \frac{{\partial \varphi_{{m_{s} }}^{(i)} }}{\partial x}\varphi_{{n_{s} }}^{(i)} } \right|_{\begin{subarray}{l} x = - L \\ y = 0 \end{subarray} } + \left. {\frac{{\partial \varphi_{{m_{r} }}^{(i)} }}{\partial x}\varphi_{{n_{r} }}^{(i)} \frac{{\partial \varphi_{{m_{s} }}^{(i)} }}{\partial x}\varphi_{{n_{s} }}^{(i)} } \right|_{\begin{subarray}{l} x = - L \\ y = 0 \end{subarray} } } \right], \hfill \\ \end{gathered}$$
(A5)
$$\left\{ {K_{ij}^{(w)} } \right\}_{rs} = - k_{t} \left( {\left. {\frac{{\partial \varphi_{{m_{r} }}^{(j)} }}{\partial x}\varphi_{{n_{r} }}^{(j)} } \right|_{\begin{subarray}{l} x = - L \\ y = 0 \end{subarray} } } \right)\left( {\left. {\frac{{\partial \varphi_{{m_{s} }}^{(i)} }}{\partial x}\varphi_{{n_{s} }}^{(i)} } \right|_{\begin{subarray}{l} x = L \\ y = 0 \end{subarray} } } \right),\;\;\;(i < j),\;\;\;K_{ji} = K_{ij} .$$
(A6)
$$\begin{gathered} \left\{ {M_{ii}^{(u)} } \right\}_{rs} = \rho H_{1} \int_{ - b}^{b} {\int_{ - L}^{L} {\left[ {\varphi_{{m_{r} }}^{(i)} \varphi_{{n_{r} }}^{(i)} \varphi_{{m_{s} }}^{(i)} \varphi_{{n_{s} }}^{(i)} } \right]{\text{d}}x{\text{d}}y} } \hfill \\ \left\{ {M_{ii}^{(v)} } \right\}_{rs} = \rho H_{1} \int_{ - b}^{b} {\int_{ - L}^{L} {\left[ {\varphi_{{m_{r} }}^{(i)} \varphi_{{n_{r} }}^{(i)} \varphi_{{m_{s} }}^{(i)} \varphi_{{n_{s} }}^{(i)} } \right]{\text{d}}x{\text{d}}y} } \hfill \\ \left\{ {M_{ii}^{(w)} } \right\}_{rs} = \rho \int_{ - h}^{h} {\int_{ - b}^{b} {\int_{ - L}^{L} {\left[ {H_{2} \frac{{\partial \varphi_{{m_{r} }}^{(i)} }}{\partial x}\varphi_{{n_{r} }}^{(i)} \frac{{\partial \varphi_{{m_{s} }}^{(i)} }}{\partial x}\varphi_{{n_{s} }}^{(i)} } \right.} } } \hfill \\ \;\left. {\left. { + H_{2} \varphi_{{m_{r} }}^{(i)} \frac{{\partial \varphi_{{n_{r} }}^{(i)} }}{\partial x}\varphi_{{m_{s} }}^{(i)} \frac{{\partial \varphi_{{n_{s} }}^{(i)} }}{\partial x} + H_{1} \varphi_{{m_{r} }}^{(i)} \varphi_{{n_{r} }}^{(i)} \varphi_{{m_{s} }}^{(i)} \varphi_{{n_{s} }}^{(i)} } \right]} \right\}{\text{d}}x{\text{d}}y{\text{d}}z, \hfill \\ \end{gathered}$$
(A7)

where the superscripts (i) and (j) denote the number of the plate, respectively. The subscripts r and s denote the serial number of the general term of the Chebyshev polynomial \(\varphi_{m} (x)\) and \(\varphi_{n} (y)\).

Elements of matrices in Eq. are listed as follows

$$\begin{gathered} {\mathbf{M}}_{u} = \rho H_{1} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {{\mathbf{U}}_{1}^{{\text{T}}} {\mathbf{U}}_{1} { + }{\mathbf{U}}_{2}^{{\text{T}}} {\mathbf{U}}_{2} + {\mathbf{U}}_{3}^{{\text{T}}} {\mathbf{U}}_{3} } \right){\text{d}}y{\text{d}}x} } \hfill \\ {\mathbf{M}}_{v} = \rho H_{1} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {{\mathbf{V}}_{1}^{{\text{T}}} {\mathbf{V}}_{1} { + }{\mathbf{V}}_{2}^{{\text{T}}} {\mathbf{V}}_{2} + {\mathbf{V}}_{3}^{{\text{T}}} {\mathbf{V}}_{3} } \right){\text{d}}y{\text{d}}x} } \hfill \\ {\mathbf{M}}_{w} = \rho \int_{ - L}^{L} {\int_{ - b}^{b} {\left[ {H_{1} \left( {{\mathbf{W}}_{1}^{{\text{T}}} {\mathbf{W}}_{1} { + }{\mathbf{W}}_{2}^{{\text{T}}} {\mathbf{W}}_{2} + {\mathbf{W}}_{3}^{{\text{T}}} {\mathbf{W}}_{3} } \right){ + }H_{2} \left( {\frac{{\partial {\mathbf{W}}_{1}^{{\text{T}}} }}{{\partial x_{1} }}\frac{{\partial {\mathbf{W}}_{1} }}{{\partial x_{1} }}{ + }\frac{{\partial {\mathbf{W}}_{1}^{{\text{T}}} }}{{\partial y_{1} }}\frac{{\partial {\mathbf{W}}_{1} }}{{\partial y_{1} }}} \right)} \right.} } \hfill \\ \, \left. {{ + }H_{2} \left( {\frac{{\partial {\mathbf{W}}_{2}^{{\text{T}}} }}{{\partial x_{2} }}\frac{{\partial {\mathbf{W}}_{2} }}{{\partial x_{2} }}{ + }\frac{{\partial {\mathbf{W}}_{2}^{{\text{T}}} }}{{\partial y_{2} }}\frac{{\partial {\mathbf{W}}_{2} }}{{\partial y_{2} }}} \right){ + }H_{2} \left( {\frac{{\partial {\mathbf{W}}_{3}^{{\text{T}}} }}{{\partial x_{3} }}\frac{{\partial {\mathbf{W}}_{3} }}{{\partial x_{3} }}{ + }\frac{{\partial {\mathbf{W}}_{3}^{{\text{T}}} }}{{\partial y_{3} }}\frac{{\partial {\mathbf{W}}_{3} }}{{\partial y_{3} }}} \right)} \right]{\text{d}}y{\text{d}}x \hfill \\ \end{gathered}$$
(A8)
$$\begin{gathered} {\mathbf{K}}_{u} = Q_{11} H_{1} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial {\mathbf{U}}_{1}^{{\text{T}}} }}{{\partial x_{1} }}\frac{{\partial {\mathbf{U}}_{1} }}{{\partial x_{1} }}{ + }\frac{{\partial {\mathbf{U}}_{2}^{{\text{T}}} }}{{\partial x_{2} }}\frac{{\partial {\mathbf{U}}_{2} }}{{\partial x_{2} }} + \frac{{\partial {\mathbf{U}}_{3}^{{\text{T}}} }}{{\partial x_{3} }}\frac{{\partial {\mathbf{U}}_{3} }}{{\partial x_{3} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ \, + Q_{66} H_{1} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial {\mathbf{U}}_{1}^{{\text{T}}} }}{{\partial y_{1} }}\frac{{\partial {\mathbf{U}}_{1} }}{{\partial y_{1} }}{ + }\frac{{\partial {\mathbf{U}}_{2}^{{\text{T}}} }}{{\partial y_{2} }}\frac{{\partial {\mathbf{U}}_{2} }}{{\partial y_{2} }} + \frac{{\partial {\mathbf{U}}_{3}^{{\text{T}}} }}{{\partial y_{3} }}\frac{{\partial {\mathbf{U}}_{3} }}{{\partial y_{3} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ {\mathbf{K}}_{v} = Q_{22} H_{1} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial {\mathbf{V}}_{1}^{{\text{T}}} }}{{\partial y_{1} }}\frac{{\partial {\mathbf{V}}_{1} }}{{\partial y_{1} }}{ + }\frac{{\partial {\mathbf{V}}_{2}^{{\text{T}}} }}{{\partial y_{2} }}\frac{{\partial {\mathbf{V}}_{2} }}{{\partial y_{2} }} + \frac{{\partial {\mathbf{V}}_{3}^{{\text{T}}} }}{{\partial y_{3} }}\frac{{\partial {\mathbf{V}}_{3} }}{{\partial y_{3} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ \, + Q_{66} H_{1} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial {\mathbf{V}}_{1}^{{\text{T}}} }}{{\partial x_{1} }}\frac{{\partial {\mathbf{V}}_{1} }}{{\partial x_{1} }}{ + }\frac{{\partial {\mathbf{V}}_{2}^{{\text{T}}} }}{{\partial x_{2} }}\frac{{\partial {\mathbf{V}}_{2} }}{{\partial x_{2} }} + \frac{{\partial {\mathbf{V}}_{3}^{{\text{T}}} }}{{\partial x_{3} }}\frac{{\partial {\mathbf{V}}_{3} }}{{\partial x_{3} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ {\mathbf{K}}_{uv} = Q_{12} H_{1} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial {\mathbf{U}}_{1}^{{\text{T}}} }}{{\partial x_{1} }}\frac{{\partial {\mathbf{V}}_{1} }}{{\partial y_{1} }}{ + }\frac{{\partial {\mathbf{U}}_{2}^{{\text{T}}} }}{{\partial x_{2} }}\frac{{\partial {\mathbf{V}}_{2} }}{{\partial y_{2} }} + \frac{{\partial {\mathbf{U}}_{3}^{{\text{T}}} }}{{\partial x_{3} }}\frac{{\partial {\mathbf{V}}_{3} }}{{\partial y_{3} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ \, + Q_{66} H_{1} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial {\mathbf{U}}_{1}^{{\text{T}}} }}{{\partial y_{1} }}\frac{{\partial {\mathbf{V}}_{1} }}{{\partial x_{1} }}{ + }\frac{{\partial {\mathbf{U}}_{2}^{{\text{T}}} }}{{\partial y_{2} }}\frac{{\partial {\mathbf{V}}_{2} }}{{\partial x_{2} }} + \frac{{\partial {\mathbf{U}}_{3}^{{\text{T}}} }}{{\partial y_{3} }}\frac{{\partial {\mathbf{V}}_{3} }}{{\partial x_{3} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ \end{gathered}$$
(A9)
$$\begin{gathered} {\mathbf{K}}_{w} = Q_{11} H_{2} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial^{2} {\mathbf{W}}_{1}^{{\text{T}}} }}{{\partial x_{1}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{1} }}{{\partial x_{1}^{2} }}{ + }\frac{{\partial^{2} {\mathbf{W}}_{2}^{{\text{T}}} }}{{\partial x_{2}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{2} }}{{\partial x_{2}^{2} }} + \frac{{\partial^{2} {\mathbf{W}}_{3}^{{\text{T}}} }}{{\partial x_{3}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{3} }}{{\partial x_{3}^{2} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ \, + Q_{22} H_{2} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial^{2} {\mathbf{W}}_{1}^{{\text{T}}} }}{{\partial y_{1}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{1} }}{{\partial y_{1}^{2} }}{ + }\frac{{\partial^{2} {\mathbf{W}}_{2}^{{\text{T}}} }}{{\partial y_{2}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{2} }}{{\partial y_{2}^{2} }} + \frac{{\partial^{2} {\mathbf{W}}_{3}^{{\text{T}}} }}{{\partial y_{3}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{3} }}{{\partial y_{3}^{2} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ \, + Q_{12} H_{2} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial^{2} {\mathbf{W}}_{1}^{{\text{T}}} }}{{\partial x_{1}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{1} }}{{\partial y_{1}^{2} }}{ + }\frac{{\partial^{2} {\mathbf{W}}_{2}^{{\text{T}}} }}{{\partial x_{2}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{2} }}{{\partial y_{2}^{2} }} + \frac{{\partial^{2} {\mathbf{W}}_{3}^{{\text{T}}} }}{{\partial x_{3}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{3} }}{{\partial y_{3}^{2} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ \, + Q_{12} H_{2} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial^{2} {\mathbf{W}}_{1}^{{\text{T}}} }}{{\partial y_{1}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{1} }}{{\partial x_{1}^{2} }}{ + }\frac{{\partial^{2} {\mathbf{W}}_{2}^{{\text{T}}} }}{{\partial y_{2}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{2} }}{{\partial x_{2}^{2} }} + \frac{{\partial^{2} {\mathbf{W}}_{3}^{{\text{T}}} }}{{\partial y_{3}^{2} }}\frac{{\partial^{2} {\mathbf{W}}_{3} }}{{\partial x_{3}^{2} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ \, + 4Q_{66} H_{2} \int_{ - L}^{L} {\int_{ - b}^{b} {\left( {\frac{{\partial^{2} {\mathbf{W}}_{1}^{{\text{T}}} }}{{\partial x_{1} \partial y_{1} }}\frac{{\partial^{2} {\mathbf{W}}_{1} }}{{\partial x_{1} \partial y_{1} }}{ + }\frac{{\partial^{2} {\mathbf{W}}_{2}^{{\text{T}}} }}{{\partial x_{2} \partial y_{2} }}\frac{{\partial^{2} {\mathbf{W}}_{2} }}{{\partial x_{2} \partial y_{2} }} + \frac{{\partial^{2} {\mathbf{W}}_{3}^{{\text{T}}} }}{{\partial x_{3} \partial y_{3} }}\frac{{\partial^{2} {\mathbf{W}}_{3} }}{{\partial x_{3} \partial y_{3} }}} \right){\text{d}}y{\text{d}}x} } \hfill \\ \end{gathered}$$
(A10)
$$ \begin{aligned} {\mathbf{N}}_{u} \left[ {{\mathbf{p}}_{u} (t)} \right] = & \sum\limits_{{i = 1}}^{3} {\int_{{ - L}}^{L} {\int_{{ - b}}^{b} {\left[ {Q_{{11}} H_{3} \left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{2} \frac{{\partial {\mathbf{U}}_{i}^{{\text{T}}} }}{{\partial x_{i} }} + Q_{{12}} H_{3} \left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{2} \frac{{\partial {\mathbf{U}}^{{\text{T}}} }}{{\partial x_{i} }} + Q_{{66}} H_{1} \frac{{\partial w_{i} }}{{\partial x_{i} }}\frac{{\partial w_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{U}}_{i}^{{\text{T}}} }}{{\partial x_{i} }}} \right]} } } {\text{d}}y_{i} {\text{d}}x_{i} , \\ {\mathbf{N}}_{v} \left[ {{\mathbf{p}}_{v} (t)} \right] = & \sum\limits_{{i = 1}}^{3} {\int_{{ - L}}^{L} {\int_{{ - b}}^{b} {\left[ {Q_{{22}} H_{3} \left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{2} \frac{{\partial {\mathbf{V}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + Q_{{12}} H_{3} \left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{2} \frac{{\partial {\mathbf{V}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + Q_{{66}} H_{1} \frac{{\partial w_{i} }}{{\partial x_{i} }}\frac{{\partial w_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{V}}_{i}^{{\text{T}}} }}{{\partial y_{i} }}} \right]} } } {\text{d}}y_{i} {\text{d}}x_{i} , \\ \end{aligned} $$
(A11)
$$\begin{gathered} {\mathbf{N}}_{w} \left[ {{\mathbf{p}}_{w} (t)} \right] = \sum\limits_{i = 1}^{3} {\int_{ - L}^{L} {\int_{ - b}^{b} {\left[ {Q_{11} H_{1} \frac{{\partial u_{i} }}{{\partial x_{i} }}\frac{{\partial w_{i} }}{{\partial x_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i} }} + Q_{11} H_{3} \left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{3} \frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i} }}{ + }Q_{12} H_{1} \frac{{\partial v_{i} }}{{\partial y_{i} }}\frac{{\partial w_{i} }}{{\partial x_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i} }}} \right.} } } \hfill \\ { + }Q_{22} H_{1} \frac{{\partial v_{i} }}{{\partial y_{i} }}\frac{{\partial w_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + Q_{22} H_{3} \left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{3} \frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + Q_{12} H_{1} \frac{{\partial u_{i} }}{{\partial x_{i} }}\frac{{\partial w_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} \hfill \\ { + }Q_{12} H_{1} \left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{2} \frac{{\partial w_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + Q_{12} H_{1} \left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{2} \frac{{\partial w_{i} }}{{\partial x_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i} }} \hfill \\ { + }Q_{66} H_{1} \left( {\frac{{\partial w_{i} }}{{\partial x_{i} }}} \right)^{2} \frac{{\partial w_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + Q_{66} H_{1} \left( {\frac{{\partial w_{i} }}{{\partial y_{i} }}} \right)^{2} \frac{{\partial w_{i} }}{{\partial x_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i} }} \hfill \\ \, + Q_{66} H_{1} \frac{{\partial w_{i} }}{{\partial x_{i} }}\frac{{\partial u_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + Q_{66} H_{1} \frac{{\partial w_{i} }}{{\partial y_{i} }}\frac{{\partial u_{i} }}{{\partial y_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i} }} \hfill \\ \, \left. { + Q_{66} H_{1} \frac{{\partial w_{i} }}{{\partial x_{i} }}\frac{{\partial v_{i} }}{{\partial x_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial y_{i} }} + Q_{66} H_{1} \frac{{\partial w_{i} }}{{\partial y_{i} }}\frac{{\partial v_{i} }}{{\partial x_{i} }}\frac{{\partial {\mathbf{W}}_{i}^{{\text{T}}} }}{{\partial x_{i} }}} \right]{\text{d}}y_{i} {\text{d}}x_{i} . \hfill \\ \end{gathered}$$
(A12)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Cao, D., He, G. et al. Nonlinear dynamic modelling and analysis of multiple thin plates connected by long hinges. Nonlinear Dyn 110, 1199–1222 (2022). https://doi.org/10.1007/s11071-022-07726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07726-7

Keywords

Navigation