Skip to main content
Log in

The effect of dynamic normal force on the stick–slip vibration characteristics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the experiment, we observed such a phenomenon: the alternating normal force changes the vibration state of a friction system. A single-degree-of-freedom mathematical model was used in this paper to discuss the effects of a constant and alternating normal force on the stick–slip vibration characteristics for different dynamic and static friction coefficients. Under the condition that the applied constant normal force continues to increase, the vibration amplitude of the system, the amplitude of the limit cycle, and the adhesion time of the system increase. When the difference between the dynamic and static friction coefficients (DSFCs) is small, the system has a complete and clear limit cycle. When the dynamic friction coefficient is reduced, the difference between DSFCs increases, and the limit cycle of the system is deformed. The friction system has more abundant dynamic vibration characteristics under an alternating normal force than a constant normal force. The vibration state of the system presents a single-cycle stick–slip vibration when the alternating normal force excites the multi-order harmonic response of the friction system, and the excitation frequency of the alternating normal force is the same as the main response frequency of the system with the highest energy or the low-order even-order main frequency. In contrast, the system exhibits various vibration modes when the excitation frequency of the alternating normal force is dissimilar to the main frequency of the system's highest energy response or is consistent with the odd-order main frequency. In addition, increasing the difference between DSFCs or using very high excitation frequencies and excitation amplitudes increases the likelihood of the system entering a chaotic vibration state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The data used in this research work are available from the authors by reasonably request.

References

  1. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos, Part I: mechanics of contact and friction. Appl. Mech. Rev. 47, 209–226 (1994)

    Article  Google Scholar 

  2. Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111, 1525–1548 (2002)

    Article  Google Scholar 

  3. Lima, R., Sampaio, R.: Parametric analysis of the statistical model of the stick-slip process. J. Sound Vib. 397, 141–151 (2017)

    Article  Google Scholar 

  4. Lima, R., Sampaio, R.: Construction of a statistical model for the dynamics of a base-driven stick-slip oscillator. Mech. Syst. Signal Proc. 91, 157–166 (2017)

    Article  Google Scholar 

  5. Du, Z.W., Fang, H.B., Zhan, X., Xu, J.: Experiments on vibration-driven stick-slip locomotion: a sliding bifurcation perspective. Mech. Syst. Signal Proc. 105, 261–275 (2018)

    Article  Google Scholar 

  6. Woodhouse, J.: The acoustics of the violin: a review. Rep. Prog. Phys. 77, 115901 (2014)

    Article  Google Scholar 

  7. He, B.B., Ouyang, H.J., He, S.W., Ren, X.M.: Dynamic analysis of integrally shrouded group blades with rubbing and impact. Nonlinear Dyn. 92, 2159–2175 (2018)

    Article  Google Scholar 

  8. Bettella, M., Harrison, M.F., Sharp, R.S.: Investigation of automotive creep groan noise with a distributed-source excitation technique. J. Sound Vib. 255, 531–547 (2002)

    Article  Google Scholar 

  9. Jearsiripongkul, T., Hochlenert, D.: Disk brake squeal: modeling and active control. 2006 IEEE Conference on Robotics, Automation and Mechatronics. (2006)

  10. Popp, K., Stelter, P.: Stick-slip vibrations and chaos. Philos. Trans. R. Soc. A 332, 89–105 (1990)

    MATH  Google Scholar 

  11. VanDeVelde, F., DeBaets, P.: Mathematical approach of the influencing factors on stick-slip induced by decelerative motion. Wear 201, 80–93 (1996)

    Article  Google Scholar 

  12. Li, Z.L., Ouyang, H., Guan, Z.Q.: Friction-induced vibration of an elastic disc and a moving slider with separation and reattachment. Nonlinear Dyn. 87, 1045–1067 (2017)

    Article  Google Scholar 

  13. Lisowski, B., Retiere, C., Moreno, J.P.G., Olejnik, P.: Semiempirical identification of nonlinear dynamics of a two-degree-of-freedom real torsion pendulum with a nonuniform planar stick–slip friction and elastic barriers. Nonlinear Dyn. 100, 3215–3234 (2020)

    Article  Google Scholar 

  14. Pascal, M.: Sticking and nonsticking orbits for a two-degree-of-freedom oscillator excited by dry friction and harmonic loading. Nonlinear Dyn. 77, 267–276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, X.C., Mo, J.L., Ouyang, H., Huang, B., Lu, X.D., Zhou, Z.R.: An investigation of stick-slip oscillation of Mn-Cu damping alloy as a friction material. Tribol. Int. 146, 106024 (2020)

    Article  Google Scholar 

  16. Nakano, K.: Two dimensionless parameters controlling the occurrence of stick-slip motion in a 1-DOF system with Coulomb friction. Tribol. Lett. 24, 91–98 (2006)

    Article  Google Scholar 

  17. McMillan, A.J.: A non-linear friction model for self-excited vibrations. J. Sound Vib. 205, 323–335 (1997)

    Article  MATH  Google Scholar 

  18. Marin, F., Alhama, F., Moreno, J.A.: Modelling of stick-slip behaviour with different hypotheses on friction forces. Int. J. Eng. Sci. 60, 13–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oestreich, M., Hinrichs, N., Popp, K.: Bifurcation and stability analysis for a non-smooth friction oscillator. Arch. Appl. Mech. 66, 301–314 (1996)

    Article  MATH  Google Scholar 

  20. Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by a moving base and/or driving force. J. Sound Vib. 245, 685–699 (2001)

    Article  Google Scholar 

  21. Popov, V.L., Starcevic, J., Filippov, A.E.: Influence of ultrasonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry friction processes. Tribol. Lett. 39, 25–30 (2010)

    Article  Google Scholar 

  22. Wei, D.G., Song, J.W., Nan, Y.H., Zhu, W.W.: Analysis of the stick-slip vibration of a new brake pad with double-layer structure in automobile brake system. Mech. Syst. Signal Proc. 118, 305–316 (2019)

    Article  Google Scholar 

  23. Ozaki, S., Hashiguchi, K.: Numerical analysis of stick-slip instability by a rate-dependent elastoplastic formulation for friction. Tribol. Int. 43, 2120–2133 (2010)

    Article  Google Scholar 

  24. Lee, S.M., Shin, M.W., Lee, W.K., Jang, H.: The correlation between contact stiffness and stick-slip of brake friction materials. Wear 302, 1414–1420 (2013)

    Article  Google Scholar 

  25. Vadivuchezhian, K., Sundar, S., Murthy, H.: Effect of variable friction coefficient on contact tractions. Tribol. Int. 44, 1433–1442 (2011)

    Article  Google Scholar 

  26. Fu, T., Wang, W.H., Ge, N., Wang, X.G., Zhang, X.Y.: Intelligent computing and simulation in seismic mitigation efficiency analysis for the variable friction coefficient RFPS structure system. Neural Comput. Appl. 33, 925–935 (2020)

    Article  Google Scholar 

  27. Hashiguchi, K., Ozaki, S.: Constitutive equation for friction with transition from static to kinetic friction and recovery of static friction. Int. J. Plast. 24, 2102–2124 (2008)

    Article  MATH  Google Scholar 

  28. Wei, D.G., Ruan, J.Y., Zhu, W.W., Kang, Z.H.: Properties of stability, bifurcation, and chaos of the tangential motion disk brake. J. Sound Vib. 375, 353–365 (2016)

    Article  Google Scholar 

  29. Rusli, M., Fesa, M.H., Dahlan, H., Bur, M.: Squeal noise analysis using a combination of nonlinear friction contact model. Int. J. Automot. Mech. Eng. 17, 8160–8167 (2020)

    Article  Google Scholar 

  30. Wang, X.C., Huang, B., Wang, R.L., Mo, J.L., Ouyang, H.J.: Friction-induced stick-slip vibration and its experimental validation. Mech. Syst. Signal Proc. 142, 106705 (2020)

    Article  Google Scholar 

  31. Liu, N.Y., Ouyang, H.J.: Friction-induced vibration considering multiple types of nonlinearities. Nonlinear Dyn. 102, 2057–2075 (2020)

    Article  Google Scholar 

  32. Hong, H.K., Liu, C.S.: Coulomb friction oscillator: modelling and responses to harmonic loads and base excitations. J. Sound Vib. 229, 1171–1192 (2000)

    Article  MATH  Google Scholar 

  33. Hong, H.K., Liu, C.S.: Non-sticking oscillation formulae for Coulomb friction under harmonic loading. J. Sound Vib. 244, 883–898 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jang, Y.H., Barber, J.R.: Effect of phase on the frictional dissipation in systems subjected to harmonically varying loads. Eur. J. Mech. A-Solids 30, 269–274 (2011)

    Article  MATH  Google Scholar 

  35. Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38, 313–323 (2010)

    Article  Google Scholar 

  36. Pilipchuk, V., Olejnik, P., Awrejcewicz, J.: Transient friction-induced vibrations in a 2-DOF model of brakes. J. Sound Vib. 344, 297–312 (2015)

    Article  Google Scholar 

  37. Liu, N.Y., Ouyang, H.J.: Friction-induced vibration of a slider-on-rotating-disc system considering uniform and non-uniform friction characteristics with bi-stability. Mech. Syst. Signal Proc. 164, 108222 (2022)

    Article  Google Scholar 

  38. Krallis, M., Hess, D.P.: Stick-slip in the presence of a normal vibration. Lubr. Sci. 8, 205–219 (2002)

    Google Scholar 

  39. Papangelo, A., Ciavarella, M.: Effect of normal load variation on the frictional behavior of a simple Coulomb frictional oscillator. J. Sound Vib. 348, 282–293 (2015)

    Article  Google Scholar 

  40. Pasternak, E., Dyskin, A., Karachevtseva, I.: Oscillations in sliding with dry friction. Friction reduction by imposing synchronised normal load oscillations. Int. J. Eng. Sci. 154, 103313 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst., Meas Control 107, 100–103 (1985)

    Article  Google Scholar 

  42. Wang, X.C., Wang, R.L., Huang, B., Mo, J.L., Ouyang, H.J.: A study of effect of various normal force loading forms on frictional stick-slip vibration. J. Dyn. Monit. Diagn. 1, 46–55 (2022)

    Google Scholar 

  43. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wei, D.G., Zhu, W.W., Wang, B., Ma, Q., Kang, Z.H.: Effects of brake pressures on stick-slip bifurcation and chaos of the vehicle brake system. J Vibroeng 17, 2718–2732 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Independent Research Projects of State Key Laboratory of Traction Power (2020TPL-T06), the Financial Support of the National Natural Science Foundation of China (No. 51822508), and the Sichuan Province Science and Technology Support Program (No. 2020JDTD0012).

Funding

The Independent Research Projects of State Key Laboratory of Traction Power (2020TPL-T06), the Financial Support of the National Natural Science Foundation of China (No. 51822508), the Sichuan Province Science and Technology Support Program (No. 2020JDTD0012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Mo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y.G., Wang, R.L., Xiang, Z.Y. et al. The effect of dynamic normal force on the stick–slip vibration characteristics. Nonlinear Dyn 110, 69–93 (2022). https://doi.org/10.1007/s11071-022-07614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07614-0

Keywords

Navigation