Skip to main content
Log in

Practical tracking control under actuator saturation for a class of flexible-joint robotic manipulators driven by DC motors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to the practical tracking control for a class of flexible-joint robotic manipulators driven by DC motors. Different from the related literature where control constraint is neglected and the disturbances are excluded or only exist in one subsystem, actuator saturation is considered in this paper, while the disturbances are present in all the three subsystems. This leads to the incapability of the traditional schemes on this topic. For this, a novel control design scheme is proposed by skillfully incorporating adaptive dynamic compensation technique, constructive methods of command filters and an auxiliary system for the actuator saturation into the backstepping framework, and in turn to design a practical tracking controller which ensures that all the states of the resulting closed-loop system are bounded and the system output practically tracks the reference signal. It is worthwhile strengthening that a more wider class of reference signals can be tracked since they are only first-order continuously differentiable but twice or more in the related literature. Finally, a numerical example is provided to validate the effectiveness of the proposed theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Albu-Schaffer, A., Ott, C., Hirzinger, G.: A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–39 (2007)

    Article  Google Scholar 

  2. Palleschi, A., Mengacci, R., Angelini, F., Caporale, D., Pallottino, L., De Luca, A., Garabini, M.: Time-optimal trajectory planning for flexible joint robots. IEEE Robot. Autom. Lett. 5(2), 938–945 (2020)

    Article  Google Scholar 

  3. Chang, Y.C., Yen, H.L.: Robust tracking control for a class of electrically driven flexible-joint robots without velocity measurements. Int. J. Control 85(2), 194–212 (2012)

    Article  MathSciNet  Google Scholar 

  4. Fateh, L.L.: Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn. 67(2), 1525–1537 (2012)

    Article  MathSciNet  Google Scholar 

  5. Izadbakhsh, A.: Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification. Nonlinear Dyn. 85(2), 751–765 (2016)

    Article  MathSciNet  Google Scholar 

  6. Li, J., Ma, K., Wu, Z.: Prescribed performance control for uncertain flexible-joint robotic manipulators driven by DC motors. Int. J. Control Autom. Syst. 19(4), 1640–1650 (2021)

    Article  Google Scholar 

  7. Kim, J., Croft, E.A.: Full-state tracking control for flexible joint robots with singular perturbation techniques. IEEE Tran. Control Syst Technol. 27(1), 63–73 (2017)

    Article  Google Scholar 

  8. Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Anal. Real World Appl. 14(1), 483–494 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cui, L., Wu, Z.: Trajectory tracking of flexible joint manipulators actuated by DC-motors under random disturbances. J. Franklin Inst. 356(16), 9330–9343 (2019)

    Article  MathSciNet  Google Scholar 

  10. Mbede, J.B., Mvogo Ahanda, J.J.B.: Exponential tracking control using backstepping approach for voltage-based control of a flexible joint electrically driven robot. J. Robot. (2014)

  11. Izadbakhsh, A., Khorashadizadeh, S.: Single-loop PID controller design for electrical flexible-joint robots. J. Braz. Soc. Mech. Sci. Eng. 42(2), 1–12 (2020)

    Article  Google Scholar 

  12. Chien, L.C., Huang, A.C.: Adaptive impedance controller design for flexible-joint electrically-driven robots without computation of the regressor matrix. Robotica 30(1), 133–144 (2012)

    Article  Google Scholar 

  13. Liu, Z.G., Wu, Y.Q.: Modelling and adaptive tracking control for flexible joint robots with random noises. Int. J Control 87(12), 2499–2510 (2014)

    Article  MathSciNet  Google Scholar 

  14. Oya, L., Su, C.Y., Kobayashi, T.: State observer-based robust control scheme for electrically driven robot manipulators. IEEE Trans. Robot. 20(4), 796–804 (2004)

    Article  Google Scholar 

  15. Hwang, J.P., Kim, E.: Robust tracking control of an electrically driven robot: adaptive fuzzy logic approach. IEEE Trans. Fuzzy Syst. 14(2), 232–247 (2006)

    Article  Google Scholar 

  16. Liu, Z.G., Huang, J.L.: A new adaptive tracking control approach for uncertain flexible joint robot system. Int. J. Autom. Comput. 12(5), 559–566 (2015)

    Article  Google Scholar 

  17. Burg, T., Dawson, D., Hu, J., De Queiroz, L.: An adaptive partial state-feedback controller for RLED robot manipulators. IEEE Trans. Autom. Control 41(7), 1024–1030 (1996)

    Article  MathSciNet  Google Scholar 

  18. Sun, W., Su, S.F., Xia, J., Nguyen, V.T.: Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. 49(11), 2201–2209 (2018)

    Article  Google Scholar 

  19. Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. IEEE Trans. Neural Netw. 19(10), 1712–1726 (2008)

    Article  Google Scholar 

  20. Diao, S., Sun, W., Yuan, W.: Adaptive fuzzy practical tracking control for flexible-joint robots via command filter design. Measur. Control 53(5–6), 814–823 (2020)

    Article  Google Scholar 

  21. Yan, Z., Lai, X., Meng, Q., Zhang, P., Wu, L.: Tracking control of single-link flexible-joint manipulator with unmodeled dynamics and dead zone. Int. J. Robust Nonlinear Control 31(4), 1270–1287 (2021)

    Article  Google Scholar 

  22. Chien, L.C., Huang, A.C.: Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties. IEEE Trans. Ind. Electron. 54(2), 1032–1038 (2007)

    Article  Google Scholar 

  23. Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(6), 1342–1355 (2006)

    Article  Google Scholar 

  24. Kim, L.S., Lee, J.S.: Adaptive tracking control of flexible-joint manipulators without overparametrization. J. Robot. Syst. 21(7), 369–379 (2004)

    Article  Google Scholar 

  25. Wang, H., Zhang, Y., Zhao, Z., Tang, X., Yang, J., Chen, I.: Finite-time disturbance observer-based trajectory tracking control for flexible-joint robots. Nonlinear Dyn. 106(1), 459–471 (2021)

    Article  Google Scholar 

  26. Peng, J.Z., Ding, S., Yang, Z.Q., Xin, J.B.: Adaptive neural impedance control for electrically driven robotic systems based on a neuro-adaptive observer. Nonlinear Dyn. 100(2), 1359–1378 (2020)

    Article  Google Scholar 

  27. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ (2002)

    MATH  Google Scholar 

  28. Farrell, J.A., Polycarpou, L., Sharma, L., Dong, W.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)

    Article  MathSciNet  Google Scholar 

  29. Dong, W.J., Farrell, J.A., Polycarpou, L.L., Djapic, V., Sharma, L.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2011)

    Article  Google Scholar 

  30. Liu, Y.J., Zhao, W., Liu, L., Li, D., Tong, S., Chen, C.P.: Adaptive neural network control for a class of nonlinear systems with function constraints on states. IEEE Trans. Neural Networks Learn. Syst. (2021)

  31. Liu, L., Liu, Y.J., Chen, A., Tong, S., Chen, C.L.: Integral barrier Lyapunov function-based adaptive control for switched nonlinear systems. Sci.China Inf. Sci. 63(3), 1–14 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundations of China (No. 61773332)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhu, L. Practical tracking control under actuator saturation for a class of flexible-joint robotic manipulators driven by DC motors. Nonlinear Dyn 109, 2745–2758 (2022). https://doi.org/10.1007/s11071-022-07602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07602-4

Keywords

Mathematics Subject Classification

Navigation