Skip to main content
Log in

Nonaxisymmetric magnetoelastic coupling natural vibration analysis of annular plates in an induced nonuniform magnetic field

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonaxisymmetric magnetoelastic nonlinear coupling free vibration study is performed for a conductive thin annular plate in the nonuniform toroidal magnetic field generated by a long straight current carrying wire in this article. From the electromagnetic theory, expressions for the magnetic field, electromagnetic force and torque acting on the plate are deduced. According to Hamilton principle, nonaxisymmetric magnetoelastic nonlinear vibration equation is derived. The displacement functions for plate under three different boundary conditions are solved, which is combined with Galerkin integral method for derivation of nondimensional coupling nonlinear differential equations. The method of multiple scales is introduced to solve the coupling equations and achieve the second-approximation analytical solution, and then, expressions for the first three mode nondimensional natural frequencies of plate are obtained. In numerical examples, diagrams of electromagnetic characteristics and the first three frequencies under magnetic field and modal coupling effect are presented, which shows the influence of different parameters, e.g., current intensity, plate size and time on natural frequencies and electromagnetic forces. The variation of system singularity stability is discussed, and the obtained analytical results are also validated. The results indicate that current, plate size and time parameters have obvious influence on natural frequencies, which also shows quite different variations under different boundaries. Additionally, initial conditions have significant effects on natural frequencies, which becomes more complicated under modal coupling effect. In nonaxisymmetric vibration case, electromagnetic forces show complicated changing rules along radial and circumferential directions. Furthermore, system equilibrium point will be changed by the induced nonuniform magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Viswanathan, K.K., Javed, S., Aziz, Z.A., Prabakar, K.: Free vibration of symmetric angle-ply laminated annular circular plate of variable thickness under shear deformation theory. Meccanica 50(12), 3013–3027 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lal, R., Rani, R.: Axisymmetric vibrations of composite annular sandwich plates of quadratically varying thickness by harmonic differential quadrature method. Acta Mech. 226(6), 1993–2012 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Smirnov, A.L., Vasiliev, G.P.: Free vibration frequencies of a circular thin plate with nonlinearly perturbed parameters. Izv. Sar. Univ. New Ser. Ser. Math. Inform. 21(2), 227–237 (2021)

    MathSciNet  Google Scholar 

  4. Vasiliev, G.P., Smirnov, A.L.: Free vibration frequencies of a circular thin plate with variable parameters. Vest. St. Petersburg Univ. Math. 53(3), 351–357 (2020)

    Article  MATH  Google Scholar 

  5. Zhang, J., Pan, S., Chen, L.: Dynamic thermal buckling and postbuckling of clamped–clamped imperfect functionally graded annular plates. Nonlinear Dyn. 95, 565–577 (2018)

    Article  Google Scholar 

  6. Sepahi, O., Forouzan, M.R., Malekzadeh, P.: Thermal buckling and postbuckling analysis of functionally graded annular plates with temperature-dependent material properties. Mater. Des. 32(7), 4030–4041 (2011)

    Article  Google Scholar 

  7. Ma, N., Wang, R., Li, P.: Geometrically nonlinear free vibration and internal resonance of a stiffened plate with four edges simply supported. J. Vib. Shock 31(24), 60–64 (2012)

    Google Scholar 

  8. Ma, N., Wang, R.: Nonlinear free vibration of stiffened plate with four edges clamped. Chin. J. Theor. Appl. Mech. 43(5), 922–930 (2011)

    MathSciNet  Google Scholar 

  9. Hu, Y., Hu, P., Zhang, J.: Strongly nonlinear subharmonic resonance and chaotic motion of axially moving thin plate in magnetic field. J. Comput. Nonlinear Dyn. 3(021010), 1–12 (2015)

    Google Scholar 

  10. Gao, Y., Xu, B., Hu, H.: Electromagneto-thermo-mechanical behaviors of conductive circular plate subject to time-dependent magnetic fields. Acta Mech. 210(1–2), 99–116 (2010)

    Article  MATH  Google Scholar 

  11. Gao, Y., Xu, B.: Dynamic behaviors of conductive circular plate in time-varying magnetic fields. Acta Mech. Solida Sin. 23(1), 66–75 (2010)

    Article  Google Scholar 

  12. Hu, Y., Li, W.: Study on primary resonance and bifurcation of a conductive circular plate rotating in air-magnetic fields. Nonlinear Dyn. 93, 671–687 (2018)

    Article  Google Scholar 

  13. Hu, Y., Li, W.: Magnetoelastic axisymmetric multi-modal resonance and Hopf bifurcation of a rotating circular plate under aerodynamic load. Nonlinear Dyn. 97, 1295–1311 (2019)

    Article  MATH  Google Scholar 

  14. Mazur, O., Awrejcewicz, J.: Ritz method in vibration analysis for embedded single-layered graphene sheets subjected to in-plane magnetic field. Symmetry. 12(4), 515 (2020)

    Article  Google Scholar 

  15. Mazur, O., Awrejcewicz, J.: Nonlinear vibrations of embedded nanoplates under in-plane magnetic field based on nonlocal elasticity theory. J. Comput. Nonlinear Dynam. 15(12), 1–8 (2020)

    Article  Google Scholar 

  16. Wang, X.: Non-axisymmetrical vibration of elastic circular plate on layered transversely isotropic saturated ground. Appl. Math. Mech. (English Ed.) 28(10), 1383–1396 (2007)

    Article  MATH  Google Scholar 

  17. Yi, H., Wang, X.: Dynamic interaction between elastic thick circular plate and transversely isotropic saturated soil ground. Appl. Math. Mech. (English Ed.) 26(9), 1146–1157 (2005)

    Article  MATH  Google Scholar 

  18. Chonan, S., Mikami, T., Ishikawa, H.: The vibrations and critical speeds of rotating sawblades. Japan. Soc. Mech. Eng. 52(478), 1805–1812 (1986)

    Google Scholar 

  19. Kermani, I.D., Ghayour, M., Mirdamadi, H.R.: Free vibration analysis of multi-directional functionally graded circular and annular plates. J. Mech. Sci. Technol. 26(11), 3399–3410 (2012)

    Article  Google Scholar 

  20. Nie, G., Zheng, Z.: Dynamic analysis of multi-directional functionally graded annular plates. Appl. Math. Model. 34(3), 608–616 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yuan, J., Wei, X., Huang, Y.: Exact solutions for nonaxisymmetric vibrations of radially inhomogeneous circular Mindlin plates with variable thickness. J. Appl. Mech. 84(7), 071003 (2017)

    Article  Google Scholar 

  22. Ding, H., Xu, R., Chen, W.: Exact solutions for free vibrations of transversely isotropic circular plates. Acta Mech. Solida Sin. (Engl. Ser.) 16(2), 141–147 (2000)

    Google Scholar 

  23. Yang, Y., Li, X.: Bending and free vibration of a circular magnetoelectroelastic plate with surface effects. Int. J. Mech. Sci. 157–158, 858–871 (2019)

    Article  Google Scholar 

  24. Wu, B., Zhang, C., Chen, W., Zhang, C.: Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates. Smart Mater. Struct. 24(9), 095017 (2015)

    Article  Google Scholar 

  25. Xin, L., Hu, Z.: Free vibration of simply supported and multilayered magneto-electro-elastic plates. Compos. Struct. 121(3), 344–350 (2015)

    Article  Google Scholar 

  26. Badri, T.M., Al-Kayi, H.H.: Analytical solution for simply supported and multilayered magneto-thermo-electro-elastic plates. Asian J. Sci. Res. 6(2), 236–244 (2013)

    Article  Google Scholar 

  27. Saadatfar, M., Zarandi, M.H.: Deformations and stresses of an exponentially graded magneto-electro-elastic non-uniform thickness annular plate which rotates with variable angular speed. Int. J. Appl. Mech. 12(5), 2050050 (2020)

    Article  Google Scholar 

  28. Charitat, T., Graner, F.: About the magnetic field of a finite wire. European J. Phys. 24(3), 267–270 (2003)

    Article  Google Scholar 

  29. Takayasu, M., Chiesa, L., Bromberg, L., Minervini, V.J.: HTS twisted stacked-tape cable conductor. Supercond. Sci. Tech. 25(1), 014011 (2012)

    Article  Google Scholar 

  30. Nayfeh, A., Mook, T.: Nonlinear Oscillations. John Wiley & Sons Inc, New York (1995)

    Book  MATH  Google Scholar 

  31. Arthur, W.: Leissa: Vibration of Plate, pp. 22–29. Office of Technology Utilization National Aeronautics And Space Administration, Washington, D. C (1969)

    Google Scholar 

  32. Chakraverty, S.: Vibration of Plates. CRC Press LLC, Boca Raton, 268–271 (2009)

  33. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińsk, G.: Nonlinear vibration of a lumped system with springs-in-series. Meccanica 56, 753–767 (2021)

    Article  MathSciNet  Google Scholar 

  34. Awrejcewicz, J., Sypniewska-Kamińsk, G., Mazur, O.: Analysing regular nonlinear vibrations of nano/micro plates based on the nonlocal theory and combination of reduced order modelling and multiple scale method. Mech. Syst. Signal Process. 163, 108132 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 11472239 and Grant No. 12172321) and Hebei Provincial Natural Science Foundation of China (Grant No. A2020203007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuda Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  1. (1)

    Expressions of \(E_{n1}\), \(E_{n2}\), \(E_{n3}\) and \(E_{n4}\) under C-F boundary

$$ E_{01} = - 315R_{a}^{8} + 210R_{a}^{7} R_{b} - 495R_{a}^{6} R_{b}^{2} - 126R_{a}^{5} R_{b}^{3} + $$
$$ 120R_{a}^{4} R_{b}^{4} + 266R_{a}^{3} R_{b}^{5} - 239R_{a}^{2} R_{b}^{6} + 90R_{a} R_{b}^{7} - $$
$$ 13R_{b}^{8} + 135R_{a}^{8} \mu + 90R_{a}^{7} R_{b} \mu - 315R_{a}^{6} R_{b}^{2} \mu - 72R_{a}^{5} R_{b}^{3} \mu + $$
$$ 105R_{a}^{4} R_{b}^{4} \mu + 178R_{a}^{3} R_{b}^{5} \mu - 173R_{a}^{2} R_{b}^{6} \mu + $$
$$ \left. {60R_{a} R_{b}^{7} \mu - 8R_{b}^{8} \mu } \right)/(3R_{b}^{2} (35R_{a}^{6} - 99R_{a}^{4} R_{b}^{2} + $$
$$ 92R_{a}^{3} R_{b}^{3} - 25R_{a}^{2} R_{b}^{4} + R_{b}^{6} + 15R_{a}^{6} \mu + R_{b}^{6} \mu - $$
$$ 63R_{a}^{4} R_{b}^{2} \mu + 72R_{a}^{3} R_{b}^{3} \mu - 25R_{a}^{2} R_{b}^{4} \mu )), $$
$$ E_{02} = (630R_{a}^{9} + 315R_{a}^{8} R_{b} - 720R_{a}^{6} R_{b}^{3} - 756R_{a}^{5} R_{b}^{4} + $$
$$ 1572R_{a}^{4} R_{b}^{5} - 560R_{a}^{3} R_{b}^{6} - 144R_{a}^{2} R_{b}^{7} + 150R_{a} R_{b}^{8} - 31R_{b}^{9} + $$
$$ 270R_{a}^{9} \mu + 135R_{a}^{8} R_{b} \mu - 720R_{a}^{6} R_{b}^{3} \mu - 396R_{a}^{5} R_{b}^{4} \mu + $$
$$ 1176R_{a}^{4} R_{b}^{5} \mu - 440R_{a}^{3} R_{b}^{6} \mu - 144R_{a}^{2} R_{b}^{7} \mu + 150R_{a} R_{b}^{8} \mu - $$
$$\begin{aligned} &31R_{b}^{9} \mu )/(9R_{b}^{3} (35R_{a}^{6} - 99R_{a}^{4} R_{b}^{2} + 92R_{a}^{3} R_{b}^{3} - \\ &-25R_{a}^{2} R_{b}^{4} \end{aligned}$$
$$ R_{b}^{6} + 15R_{a}^{6} \mu - 63R_{a}^{4} R_{b}^{2} \mu + 72R_{a}^{3} R_{b}^{3} \mu - 25R_{a}^{2} R_{b}^{4} \mu + R_{b}^{6} \mu )), $$
$$ E_{03} = ( - 198R_{a}^{9} + 45R_{a}^{8} R_{b} + 96R_{a}^{7} R_{b}^{2} - 133R_{a}^{6} R_{b}^{3} + $$
$$ 180R_{a}^{5} R_{b}^{4} - 63R_{a}^{4} R_{b}^{5} - 52R_{a}^{3} R_{b}^{6} + 31R_{a}^{2} R_{b}^{7} - $$
$$ 6R_{a} R_{b}^{8} - 126R_{a}^{9} \mu + 81R_{a}^{8} R_{b} \mu + 96R_{a}^{7} R_{b}^{2} \mu - 89R_{a}^{6} R_{b}^{3} \mu + 108R_{a}^{5} R_{b}^{4} \mu - 63R_{a}^{4} R_{b}^{5} \mu - 32R_{a}^{3} R_{b}^{6} \mu + $$
$$ 31R_{a}^{2} R_{b}^{7} \mu + 6R_{a} R_{b}^{8} \mu )/(3R_{b}^{3} (35R_{a}^{6} - 99R_{a}^{4} R_{b}^{2} + $$
$$ 92R_{a}^{3} R_{b}^{3} - 25R_{a}^{2} R_{b}^{4} + R_{b}^{6} + 15R_{a}^{6} \mu - 63R_{a}^{4} R_{b}^{2} \mu - $$
$$ 25R_{a}^{2} R_{b}^{4} \mu + R_{b}^{6} \mu )), $$
$$ E_{04} = (270R_{a}^{9} - 90R_{a}^{8} R_{b} - 150R_{a}^{7} R_{b}^{2} + 185R_{a}^{6} R_{b}^{3} - $$
$$ 234R_{a}^{5} R_{b}^{4} + 192R_{a}^{4} R_{b}^{5} - 62R_{a}^{3} R_{b}^{6} + 9R_{a}^{2} R_{b}^{7} + $$
$$ 180R_{a}^{9} \mu - 135R_{a}^{8} R_{b} \mu - 150R_{a}^{7} R_{b}^{2} \mu + 155R_{a}^{6} R_{b}^{3} \mu - $$
$$ 144R_{a}^{5} R_{b}^{4} \mu + 147R_{a}^{4} R_{b}^{5} \mu - 62R_{a}^{3} R_{b}^{6} \mu + 9R_{a}^{2} R_{b}^{7} \mu )/ $$
$$ (9R_{b}^{3} (35R_{a}^{6} - 99R_{a}^{4} R_{b}^{2} + 92R_{a}^{3} R_{b}^{3} - 25R_{a}^{2} R_{b}^{4} + R_{b}^{6} + $$

\(15R_{a}^{6} \mu - 63R_{a}^{4} R_{b}^{2} \mu + 72R_{a}^{3} R_{b}^{3} \mu - 25R_{a}^{2} R_{b}^{4} \mu + R_{b}^{6} \mu ))\).

$$ E_{11} = - (96R_{a} R_{b}^{7} + 220R_{a}^{7} R_{b} + 90R_{a}^{8} \mu - 6R_{b}^{8} \mu + 330R_{a}^{8} - $$
$$ 18R_{b}^{8} - 213R_{a}^{2} R_{b}^{6} + 240R_{a}^{3} R_{b}^{5} + 130R_{a}^{4} R_{b}^{4} - $$
$$ 132R_{a}^{5} R_{b}^{3} - 525R_{a}^{6} R_{b}^{2} - 47R_{a}^{2} R_{b}^{6} \mu + 40R_{a}^{3} R_{b}^{5} \mu + $$
$$ 50R_{a}^{4} R_{b}^{4} \mu - 44R_{a}^{5} R_{b}^{3} \mu - 175R_{a}^{6} R_{b}^{2} \mu + 32R_{a} R_{b}^{7} \mu + $$
$$ 60R_{a}^{7} R_{b} \mu )/(R_{b}^{2} (30R_{a}^{6} \mu + R_{b}^{6} \mu + 110R_{a}^{6} + 3R_{b}^{6} - $$
$$ 78R_{a}^{2} R_{b}^{4} + 292R_{a}^{3} R_{b}^{3} - 315R_{a}^{4} R_{b}^{2} - 30R_{a}^{2} R_{b}^{4} \mu + $$
$$ 104R_{a}^{3} R_{b}^{3} \mu - 105R_{a}^{4} R_{b}^{2} \mu )), $$
$$ E_{12} = - (2(2R_{b}^{9} \mu - 55R_{a}^{8} R_{b} - 30R_{a}^{9} \mu - 26R_{a} R_{b}^{8} - 110R_{a}^{9} + $$
$$ 6R_{b}^{9} + 25R_{a}^{2} R_{b}^{7} + 72R_{a}^{3} R_{b}^{6} - 245R_{a}^{4} R_{b}^{5} + $$
$$ 132R_{a}^{5} R_{b}^{4} + 125R_{a}^{6} R_{b}^{3} + 10R_{a}^{2} R_{b}^{7} \mu + 8R_{a}^{3} R_{b}^{6} \mu - $$
$$ 55R_{a}^{4} R_{b}^{5} \mu + 40R_{a}^{5} R_{b}^{4} \mu + 50R_{a}^{6} R_{b}^{3} \mu - 10R_{a} R_{b}^{8} \mu - $$
$$ 15Ra^{8} R_{b} \mu ))/(R_{b}^{3} (30R_{a}^{6} \mu + R_{b}^{6} \mu + 110R_{a}^{6} + $$
$$ 3R_{b}^{6} - 78R_{a}^{2} R_{b}^{4} + 292R_{a}^{3} R_{b}^{3} - 315R_{a}^{4} R_{b}^{2} - 30R_{a}^{2} R_{b}^{4} \mu + $$
$$ 104R_{a}^{3} R_{b}^{3} \mu - 105R_{a}^{4} R_{b}^{2} \mu )), $$
$$ E_{13} = - (R_{a} (70R_{a}^{8} \mu - 45R_{a}^{7} R_{b} - 36R_{a} R_{b}^{7} + 2R_{b}^{8} \mu + $$
$$ 210R_{a}^{8} + 6R_{b}^{8} + 72R_{a}^{2} R_{b}^{6} + 65R_{a}^{3} R_{b}^{5} - $$
$$ 192R_{a}^{4} R_{b}^{4} + 120R_{a}^{5} R_{b}^{3} - 100R_{a}^{6} R_{b}^{2} + 24R_{a}^{2} R_{b}^{6} \mu + $$
$$ 25R_{a}^{3} R_{b}^{5} \mu - 64R_{a}^{4} R_{b}^{4} \mu + 20R_{a}^{5} R_{b}^{3} \mu - 40R_{a}^{6} R_{b}^{2} \mu - $$
$$ 12R_{a} R_{b}^{7} \mu - 25R_{a}^{7} R_{b} \mu ))/(R_{b}^{3} (30R_{a}^{6} \mu + R_{b}^{6} \mu + $$
$$ 110R_{a}^{6} + 3R_{b}^{6} - 78R_{a}^{2} R_{b}^{4} + 292R_{a}^{3} R_{b}^{3} - 315R_{a}^{4} R_{b}^{2} - $$
$$ 30R_{a}^{2} R_{b}^{4} \mu + 104R_{a}^{3} R_{b}^{3} \mu - 105R_{a}^{4} R_{b}^{2} \mu )), $$
$$ E_{14} = - (R_{a}^{2} (24R_{a} R_{b}^{6} + 30R_{a}^{6} R_{b} - 32R_{a}^{7} \mu - R_{b}^{7} \mu - $$
$$ 96R_{a}^{7} - 3R_{b}^{7} - 80R_{a}^{2} R_{b}^{5} + 84R_{a} 3R_{b}^{4} - 51R_{a}^{4} R_{b} 3 + $$
$$ 52R_{a}^{5} R_{b}^{2} - 28R_{a}^{2} R_{b}^{5} \mu + 28R_{a}^{3} R_{b}^{4} \mu - 9R_{a}^{4} R_{b}^{3} \mu + $$
$$ 20R_{a}^{5} R_{b}^{2} \mu + 8R_{a} R_{b}^{6} \mu + 14R_{a}^{6} R_{b} \mu ))/(R_{b}^{3} (30R_{a}^{6} \mu + $$
$$ R_{b}^{6} \mu + 110R_{a}^{6} + 3R_{b}^{6} - 78R_{a}^{2} R_{b}^{4} + 292R_{a}^{3} R_{b}^{3} - $$
$$ 315R_{a}^{4} R_{b}^{2} - 30R_{a}^{2} R_{b}^{4} \mu + 104R_{a}^{3} R_{b}^{3} \mu - 105R_{a}^{4} R_{b}^{2} \mu )). $$
$$ E_{21} = - (6R_{a}^{8} \mu^{2} + 33R_{a}^{8} \mu - 375R_{a}^{8} + 4R_{a}^{7} R_{b} \mu^{2} + $$
$$ 22R_{a}^{7} R_{b} \mu - 250R_{a}^{7} R_{b} - 30R_{a}^{6} R_{b}^{2} \mu^{2} - 185R_{a}^{6} R_{b}^{2} \mu + $$
$$ 615R_{a}^{6} R_{b}^{2} - 40R_{a}^{5} R_{b}^{3} \mu + 150R_{a}^{5} R_{b}^{3} + 18R_{a}^{4} R_{b}^{4} \mu^{2} + $$
$$ 79R_{a}^{4} R_{b}^{4} \mu - 160R_{a}^{4} R_{b}^{4} + 52R_{a}^{3} R_{b}^{5} \mu^{2} + 270R_{a}^{3} R_{b}^{5} \mu - $$
$$ 162R_{a}^{3} R_{b}^{5} - 66R_{a}^{2} R_{b}^{6} \mu^{2} - 199R_{a}^{2} R_{b}^{6} \mu + 135R_{a}^{2} R_{b}^{6} + $$
$$ 8R_{a} R_{b}^{7} \mu^{2} + 36R_{a} R_{b}^{7} \mu - 114R_{a} R_{b}^{7} + 8R_{b}^{8} \mu^{2} - $$
$$ 16R_{b}^{8} \mu + 33R_{b}^{8} )/(R_{b}^{2} (2R_{a}^{6} \mu^{2} + 11R_{a}^{6} \mu - 125R_{a}^{6} - $$
$$ 18R_{a}^{4} R_{b}^{2} \mu^{2} - 111R_{a}^{4} R_{b}^{2} \mu + 369R_{a}^{4} R_{b}^{2} + 32R_{a}^{3} R_{b}^{3} \mu^{2} $$
$$ + 168R_{a}^{3} R_{b}^{3} \mu - 340R_{a}^{3} R_{b}^{3} - 18R_{a}^{2} R_{b}^{4} \mu^{2} - 69R_{a}^{2} R_{b}^{4} \mu + $$
$$ 87R_{a}^{2} R_{b}^{4} + 2R_{b}^{6} \mu^{2} + R_{b}^{6} \mu - 3R_{b}^{6} )), $$
$$ E_{22} = (4R_{a}^{9} \mu^{2} + 22R_{a}^{9} \mu - 250R_{a}^{9} + 2R_{a}^{8} R_{b} \mu^{2} + $$
$$ 11R_{a}^{8} R_{b} \mu - 125R_{a}^{8} R_{b} - 40R_{a}^{6} R_{b} 3\mu^{2} - 240R_{a}^{6} R_{b}^{3} \mu + $$
$$ 280R_{a}^{6} R_{b}^{3} - 76R_{a}^{5} R_{b}^{4} \mu + 300R_{a}^{5} R_{b}^{4} + 108R_{a}^{4} R_{b}^{5} \mu^{2} + $$
$$ 520R_{a}^{4} R_{b}^{5} \mu - 388R_{a}^{4} R_{b}^{5} - 80R_{a}^{3} R_{b}^{6} \mu^{2} - 216R_{a}^{3} R_{b}^{6} \mu + $$
$$ 16R_{a}^{3} R_{b}^{6} - 8R_{a}^{2} R_{b}^{7} \mu^{2} - 48R_{a}^{2} R_{b}^{7} \mu + 56R_{a}^{2} R_{b}^{7} + $$
$$ 12R_{a} R_{b}^{8} \mu^{2} + 46R_{a} R_{b}^{8} \mu - 58R_{a} R_{b}^{8} + 2R_{b}^{9} \mu^{2} - 19R_{b}^{9} \mu + $$
$$ 17R_{b}^{9} )/(R_{b}^{3} (2R_{a}^{6} \mu^{2} + 11R_{a}^{6} \mu - 125R_{a}^{6} - 18R_{a}^{4} R_{b}^{2} \mu^{2} - 111R_{a}^{4} R_{b}^{2} \mu + 369R_{a}^{4} R_{b}^{2} + 32R_{a}^{3} R_{b}^{3} \mu^{2} + 168R_{a}^{3} R_{b}^{3} \mu - $$
$$ 340R_{a}^{3} R_{b}^{3} - 18R_{a}^{2} R_{b}^{4} \mu^{2} - 69R_{a}^{2} R_{b}^{4} \mu + 87R_{a}^{2} R_{b}^{4} + $$
$$ 2R_{b}^{6} \mu^{2} + R_{b}^{6} \mu - 3R_{b}^{6} )), $$
$$ E_{23} = - (R_{a} (12R_{a}^{8} \mu^{2} + 74R_{a}^{8} \mu - 246R_{a}^{8} - 18R_{a}^{7} R_{b} \mu^{2} - $$
$$ 107R_{a}^{7} R_{b} \mu + 45R_{a}^{7} R_{b} - 16R_{a}^{6} R_{b}^{2} \mu^{2} - 96R_{a}^{6} R_{b}^{2} \mu + $$
$$ 112R_{a}^{6} R_{b}^{2} + 26R_{a}^{5} R_{b}^{3} \mu^{2} + 135R_{a}^{5} R_{b}^{3} \mu - 81R_{a}^{5} R_{b}^{3} - $$
$$ 68R_{a}^{4} R_{b}^{4} \mu + 228R_{a}^{4} R_{b}^{4} + 18R_{a}^{3} R_{b}^{5} \mu^{2} + 53R_{a}^{3} R_{b}^{5} \mu - $$
$$ 71R_{a}^{3} R_{b}^{5} - 32R_{a}^{2} R_{b}^{6} \mu^{2} + 64R_{a}^{2} R_{b}^{6} \mu - 132R_{a}^{2} R_{b}^{6} + $$
$$ 6R_{a} R_{b}^{7} \mu^{2} - 57R_{a} R_{b}^{7} \mu + 51R_{a} R_{b}^{7} + 4R_{b}^{8} \mu^{2} + $$
$$ 2R_{b}^{8} \mu - 6R_{b}^{8} ))/(R_{b}^{3} (2R_{a}^{6} \mu^{2} + 125R_{a}^{6} - 18R_{a}^{4} R_{b}^{2} \mu^{2} - $$
$$ 11R_{a}^{6} \mu - 111R_{a}^{4} R_{b}^{2} \mu + 369R_{a}^{4} R_{b}^{2} + 32R_{a}^{3} R_{b}^{3} \mu^{2} + $$
$$ 340R_{a}^{3} R_{b}^{3} - 18R_{a}^{2} R_{b}^{4} \mu^{2} - 168R_{a}^{3} R_{b}^{3} \mu - 69R_{a}^{2} R_{b}^{4} \mu + $$
$$ 87R_{a}^{2} R_{b}^{4} + 2R_{b}^{6} \mu^{2} + R_{b}^{6} \mu - 3R_{b}^{6} )), $$
$$ E_{24} = (R_{a}^{2} (8R_{a}^{7} \mu^{2} + 36R_{a}^{7} \mu - 114R_{a}^{7} - 14R_{a}^{6} R_{b} \mu^{2} - $$
$$ 51R_{a}^{6} R_{b} \mu + 30R_{a}^{6} R_{b} - 12R_{a}^{5} R_{b}^{2} \mu^{2} - 46R_{a}^{5} R_{b}^{2} \mu + $$
$$ 58R_{a}^{5} R_{b}^{2} + 30R_{a}^{4} R_{b}^{3} \mu^{2} + 59R_{a}^{4} R_{b}^{3} \mu - 19R_{a}^{4} R_{b}^{3} - $$
$$ 32R_{a}^{3} R_{b}^{4} \mu + 102R_{a}^{3} R_{b}^{4} - 18R_{a}^{2} R_{b}^{5} \mu^{2} + 71R_{a}^{2} R_{b}^{5} \mu - $$
$$ 128R_{a}^{2} R_{b}^{5} + 4R_{a} R_{b}^{6} \mu^{2} - 38R_{a} R_{b}^{6} \mu + 34R_{a} R_{b}^{6} + $$
$$ 2R_{b}^{7} \mu^{2} + R_{b}^{7} \mu - 3R_{b}^{7} ))/(R_{b}^{3} (2R_{a}^{6} \mu^{2} + 125R_{a}^{6} - $$
$$ 18R_{a}^{4} R_{b}^{2} \mu^{2} - 11R_{a}^{6} \mu - 111R_{a}^{4} R_{b}^{2} \mu + 369R_{a}^{4} R_{b}^{2} + $$
$$ 32R_{a}^{3} R_{b}^{3} \mu^{2} + 340R_{a}^{3} R_{b}^{3} - 18R_{a}^{2} R_{b}^{4} \mu^{2} - 168R_{a}^{3} R_{b}^{3} \mu - $$
$$ 69R_{a}^{2} R_{b}^{4} \mu + 87R_{a}^{2} R_{b}^{4} + 2R_{b}^{6} \mu^{2} + R_{b}^{6} \mu - 3R_{b}^{6} )). $$
  1. (2)

    Expressions of \(E_{n1}\), \(E_{n2}\), \(E_{n3}\) and \(E_{n4}\) under C–C boundary

$$ E_{01} = - (3R_{a}^{4} + 14R_{a}^{3} R_{b} + 23R_{a}^{2} R_{b}^{2} + 20R_{a} R_{b}^{3} + 4R_{b}^{4} )/ $$
$$ R_{b}^{2} (R_{a}^{2} + 4R_{a} R_{b} + R_{b}^{2} ), $$
$$ E_{02} = (2R_{a}^{5} + 9R_{a}^{4} R_{b} + 24R_{a}^{3} R_{b}^{2} + 30R_{a}^{2} R_{b}^{3} + 10R_{a} R_{b}^{4} + $$
$$ R_{b}^{5} )/R_{b}^{3} (R_{a}^{2} + 4R_{a} R_{b} + R_{b}^{2} ), $$
$$ E_{03} = - (6R_{a}^{5} + 15R_{a}^{4} R_{b} + 16R_{a}^{3} R_{b}^{2} + 11R_{a}^{2} R_{b}^{3} + 2R_{a} R_{b}^{4} )/ $$
$$ R_{b}^{3} (R_{a}^{2} + 4R_{a} R_{b} + R_{b}^{2} ), $$
$$ E_{04} = (4R_{a}^{5} + 9R_{a}^{4} R_{b} + 6R_{a}^{3} R_{b}^{2} + R_{a}^{2} R_{b}^{3} )/R_{b}^{3} (R_{a}^{2} $$
$$ + 4R_{a} R_{b} + R_{b}^{2} ). $$
$$ E_{01} = E_{11} = E_{21} ,\;E_{02} = E_{12} = E_{22} ,\;E_{03} = E_{13} = E_{23} ,\;E_{04} = E_{14} = E_{24} . $$
  1. (3)

    Expressions of \(E_{n1}\), \(E_{n2}\), \(E_{n3}\) and \(E_{n4}\) under S–S boundary

    $$ E_{01} = - (60R_{a}^{6} + 180R_{a}^{5} R_{b} - 180R_{a}^{4} R_{b}^{2} - 600R_{a}^{3} R_{b}^{3} - $$
    $$ 660R_{a}^{2} R_{b}^{4} + 372R_{a} R_{b}^{5} + 60R_{b}^{6} + 36R_{a}^{6} \mu + 98R_{a}^{5} R_{b} \mu - $$
    $$ 20R_{a}^{4} R_{b}^{2} \mu - 150R_{a}^{3} R_{b}^{3} \mu - 166R_{a}^{2} R_{b}^{4} \mu + 156R_{a} R_{b}^{5} \mu + $$
    $$ 46R_{b}^{6} \mu + 3R_{a}^{6} \mu^{2} + 8R_{a}^{5} R_{b} \mu^{2} - 2R_{a}^{4} R_{b}^{2} \mu^{2} - $$
    $$ 12R_{a}^{3} R_{b}^{3} \mu^{2} - 13R_{a}^{2} R_{b}^{4} \mu^{2} + 12R_{a} R_{b}^{5} \mu^{2} + 4R_{b}^{6} \mu^{2} )/ $$
    $$ R_{b}^{2} (40R_{a}^{4} + 80R_{a}^{3} R_{b} - 312R_{a}^{2} R_{b}^{2} + 80R_{a} R_{b}^{3} + 40R_{b}^{4} + $$
    $$ 14R_{a}^{4} \mu + 28R_{a}^{3} R_{b} \mu - 84R_{a}^{2} R_{b}^{2} \mu + 28R_{a} R_{b}^{3} \mu + $$
    $$ 14R_{b}^{4} \mu + R_{a}^{4} \mu^{2} + 2R_{a}^{3} R_{b} \mu^{2} - 6R_{a}^{2} R_{b}^{2} \mu^{2} + $$
    $$ 2R_{a} R_{b}^{3} \mu^{2} + R_{b}^{4} \mu^{2} )), $$
    $$ E_{02} = (20R_{a}^{7} + 60R_{a}^{6} R_{b} + 100R_{a}^{5} R_{b}^{2} - 420R_{a}^{4} R_{b}^{3} - $$
    $$ 1060R_{a}^{3} R_{b}^{4} + 244R_{a}^{2} R_{b}^{5} + 204R_{a} R_{b}^{6} - 60R_{b}^{7} + $$
    $$ + 22R_{a}^{7} \mu + 56R_{a}^{6} R_{b} \mu + 90R_{a}^{5} R_{b}^{2} \mu - 96R_{a}^{4} R_{b}^{3} \mu - $$
    $$ 306R_{a}^{3} R_{b}^{4} \mu \, + 132R_{a}^{2} R_{b}^{5} \mu + 98R_{a} R_{b}^{6} \mu + 4R_{a}^{7} \mu + $$
    $$ 2R_{a}^{7} \mu^{2} + 5R_{a}^{6} R_{b} \mu^{2} + 8R_{a}^{5} R_{b}^{2} \mu^{2} + 9R_{a}^{4} R_{b}^{3} \mu^{2} - $$
    $$ 26R_{a}^{3} R_{b}^{4} \mu^{2} + + 11R_{a}^{2} R_{b}^{5} \mu^{2} + 8R_{a} R_{b}^{6} \mu^{2} + R_{b}^{7} \mu^{2} )/ $$
    $$ (R_{b}^{3} \cdot (40R_{a}^{4} + 80R_{a}^{3} R_{b} - 312R_{a}^{2} R_{b}^{2} + 80R_{a} R_{b}^{3} + $$
    $$ 40R_{b}^{4} + 14R_{a}^{4} \mu + 28R_{a}^{3} R_{b} \mu - 84R_{a}^{2} R_{b}^{2} \mu + 28R_{a} R_{b}^{3} \mu + $$
    $$ 14R_{b}^{4} \mu + R_{a}^{4} \mu^{2} + 2R_{a}^{3} R_{b} \mu^{2} - 6R_{a}^{2} R_{b}^{2} \mu^{2} + $$
    $$ 2R_{a} R_{b}^{3} \mu^{2} + R_{b}^{4} \mu^{2} )), $$
    $$ E_{03} = - (48R_{a}^{7} - 24R_{a}^{6} R_{b} - 264R_{a}^{5} R_{b}^{2} - 192R_{a}^{4} R_{b}^{3} - $$
    $$ 240R_{a}^{3} R_{b}^{4} + 72R_{a} R_{b}^{6} + 54R_{a}^{7} \mu + 30R_{a}^{6} R_{b} \mu - $$
    $$ 74R_{a}^{5} R_{b}^{2} \mu - 48R_{a}^{4} R_{b}^{3} \mu - 46R_{a}^{3} R_{b}^{4} \mu + 58R_{a}^{2} R_{b}^{5} \mu + $$
    $$ 26R_{a} R_{b}^{6} \mu + 6R_{a}^{7} \mu^{2} + 3R_{a}^{6} R_{b} \mu^{2} - 8R_{a}^{5} R_{b}^{2} \mu^{2} - $$
    $$ 6R_{a}^{4} R_{b}^{3} \mu^{2} - 4R_{a}^{3} R_{b}^{4} \mu^{2} + 7R_{a}^{2} R_{b}^{5} \mu^{2} + 2R_{a} R_{b}^{6} \mu^{2} )/ $$
    $$ R_{b}^{3} \, \left( {40R_{a}^{4} + 80R_{a}^{3} R_{b} - } \right.312R_{a}^{2} R_{b}^{2} + 80R_{a} R_{b}^{3} + $$
    $$ 40R_{b}^{4} + 14R_{a}^{4} \mu + 28R_{a}^{3} R_{b} \mu - 84R_{a}^{2} R_{b}^{2} \mu + $$
    $$ 28R_{a} R_{b}^{3} \mu + 14R_{b}^{4} \mu + R_{a}^{4} \mu^{2} + 2R_{a}^{3} R_{b} \mu^{2} - $$
    $$ 6R_{a}^{2} R_{b}^{2} \mu^{2} + 2R_{a} R_{b}^{3} \mu^{2} + R_{b}^{4} \mu^{2} )), $$
    $$ E_{04} = (28R_{a}^{7} - 24R_{a}^{6} R_{b} - 184R_{a}^{5} R_{b}^{2} - 72R_{a}^{4} R_{b}^{3} - $$
    $$ 20R_{a}^{3} R_{b}^{4} + 32R_{a}^{2} R_{b}^{5} + 32R_{a}^{7} \mu - 66R_{a}^{5} R_{b}^{2} \mu + $$
    $$ 10R_{a}^{6} R_{b} \mu - 14R_{a}^{4} R_{b}^{3} \mu + 26R_{a}^{3} R_{b}^{4} \mu + 12R_{a}^{2} R_{b}^{5} \mu + $$
    $$ 4R_{a}^{7} \mu^{2} + R_{a}^{6} R_{b} \mu^{2} - 8R_{a}^{5} R_{b}^{2} \mu^{2} - 2R_{a}^{4} R_{b}^{3} \mu^{2} + $$
    $$ 4R_{a}^{3} R_{b}^{4} \mu^{2} + R_{a}^{2} R_{b}^{5} \mu^{2} )/(R_{b}^{3} (40R_{a}^{4} + 80R_{a}^{3} R_{b} - $$
    $$ 312R_{a}^{2} R_{b}^{2} + 80R_{a} R_{b}^{3} + 40R_{b}^{4} + 14R_{a}^{4} \mu + 28R_{a}^{3} R_{b} \mu $$
    $$ - 84R_{a}^{2} R_{b}^{2} \mu + 28R_{a} R_{b}^{3} \mu + 14R_{b}^{4} \mu + R_{a}^{4} \mu^{2} + $$
    $$ 2R_{a}^{3} R_{b} \mu^{2} - 6R_{a}^{2} R_{b}^{2} \mu^{2} + 2R_{a} R_{b}^{3} \mu^{2} + R_{b}^{4} \mu^{2} )). $$
    $$ E_{01} = E_{11} = E_{21} ,\;E_{02} = E_{12} = E_{22} ,\;E_{03} = E_{13} = E_{23} ,\;E_{04} = E_{14} = E_{24} . $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Xu, H. Nonaxisymmetric magnetoelastic coupling natural vibration analysis of annular plates in an induced nonuniform magnetic field. Nonlinear Dyn 109, 657–687 (2022). https://doi.org/10.1007/s11071-022-07475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07475-7

Keywords

Navigation