Skip to main content
Log in

Dynamic characteristics of ball bearing-coupling-rotor system with angular misalignment fault

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The rotor misalignment fault, which occurs only second to imbalance, easily occurs in the practical rotating machinery system. Rotor misalignment can be further divided into coupling misalignment and bearing misalignment. However, most of the existing references only analyze the effect of coupling misalignment on the dynamic characteristics of the rotor system and ignore the change of bearing excitation caused by misalignment. Based on the above limitations, a five degrees of freedom nonlinear restoring force mathematical model is proposed, considering misalignment of bearing rings and clearance of cage pockets. The finite element model of the rotor is established based on the Timoshenko beam element theory. The coupling misalignment excitation force and rotor imbalance force are introduced. Finally, the dynamic model of the ball bearing-coupling-rotor system is established. The radial and axial vibration responses of the system under misalignment fault are analyzed by simulation. The results show that the bearing misalignment significantly influences the dynamic characteristics of the system in the low-speed range, so bearing misalignment should not be ignored in modeling. With the increase of rotating speed, rotor imbalance and coupling misalignment have a greater impact. Misalignment causes periodic changes in bearing contact angle, radial clearance, and ball rotational speed. It also leads to reciprocating impact and collision between the ball and cage. In addition, misalignment increases the critical speed and the axial vibration of the system. The results can provide a basis for health monitoring and misalignment fault diagnosis of the rolling bearing-rotor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

A j :

Relative distance between curvature centers of inner and outer raceways after initial misalignment

A j′:

Relative distance between curvature centers of inner and outer raceways after vibration

C b :

Support damping matrix

c c :

Clearance of cage pocket

c r :

Initial radial clearance of rolling bearing

c r j′:

Radial clearance at the position of the j-th ball after misalignment

C s :

Rotor damping matrix

d b :

Ball diameter

d m :

Bearing pitch diameter

D d p :

Disc element gyro matrix at the node p

e d p :

Disc eccentricity at the node p

f i, f o :

Curvature radius coefficient of inner and outer raceway

f r :

Rotating frequency

f vc :

Varying compliance vibration frequency of rolling bearing

F b :

Nonlinear force vector of rolling bearing

F b j :

Contact force between the j-th ball and the raceway

F b x, F b y, F b z :

Nonlinear restoring force component of rolling bearing along X-, Y-, and Z-directions

F c :

Coupling misalignment force vector

F c x, F c y :

Misalignment force component of coupling along X- and Y-directions

F e :

Rotor imbalance force vector

F ep x, F ep y :

Imbalance force component of rotor along X- and Y-directions

G :

Rotor gravity vector

h d :

Disc thickness

J d :

Disc gyro matrix

J d p, J p p :

Diameter /polar moment of inertia of the disk at node p

J s :

Gyro matrix of shaft

J s q :

Gyro matrix of the q-th shaft element

k b j :

Hertz contact stiffness between the j-th ball and the raceway

K s :

Stiffness matrix of shaft

K s q :

Stiffness matrix of the q-th shaft element

l :

Length of rotor

M b x, M b y :

Nonlinear restoring torque of rolling bearing around X- and Y-axes

M d :

Disc mass matrix

m d p :

Disc mass at node p

M d p :

Disc mass matrix at node p

M s :

Shaft mass matrix

M s q :

Mass matrix of the q-th shaft element

N b :

Number of bearing balls

r b :

Raceway radius of bearing inner ring

r d :

Inner radius of disc

r d j :

Radial distance of curvature center of inner raceway at the j-th ball angle position

r i, r o :

Curvature radius of inner/outer ring of bearing raceway

R b :

Raceway radius of bearing outer ring

R d :

Outer radius of disc

U :

Rotor displacement vector

U q :

Displacement vector of the q-th shaft element

α j :

Initial contact angle of the j-th ball after misalignment

α j′:

Contact angle of the j-th ball after vibration

δ :

Misalignment of coupling

δ j :

Contact deformation between the j-th ball and the raceway

θ 01 :

Initial position angle of the first ball

θ j :

Position angle of the j-th ball

φ :

Misalignment angle

φ x, φ y :

Misalignment angle of bearing ring around X- and Y-axes

ω b j :

Revolution angular velocity of the j-th ball

ω c :

Rotating angular velocity of cage

ω r :

Rotating angular velocity of rotor

Δ j :

The normal clearance caused by the angular position of the j-th ball.

Δ l :

Distance between two coupling halves

ρ in, ∑ρ out :

Sum of curvature of inner/outer raceway of bearing

References

  1. Rybczyński, J.: The possibility of evaluating turbo-set bearing misalignment defects on the basis of bearing trajectory features. Mech. Syst. Signal Process. 25, 521–536 (2011). https://doi.org/10.1016/j.ymssp.2010.07.011

    Article  Google Scholar 

  2. Harris, T.A., Kotzalas, M.N.: Advanced Concepts of Bearing Technology Rolling Bearing Analysis. Taylor & Francis, Boca Raton (2006). https://doi.org/10.1201/9781420006582

    Book  Google Scholar 

  3. ISO 15243: 2017, Rolling bearings-damage and failures-terms, characteristics and causes. International Organization for Standardization, Geneva, (2017)

  4. Chen, C.H.: The Common Failures of Aero-Engine Mechanical System. China Aviation Publishing & Media, Beijing (2013).. ((in Chinese))

    Google Scholar 

  5. Gibbons, C. B.: Coupling misalignment forces. In: Proceedings of the 5th Turbomachinery Symposium, Texas A&M University, Gas Turbine Laboratories, pp.111–116 (1976). https://doi.org/10.21423/R10T1X

  6. Sekhar, A.S., Prabhu, B.S.: Effects of coupling misalignment on vibrations of rotating machinery. J. Sound Vib. 185, 655–671 (1995). https://doi.org/10.1006/jsvi.1995.0407

    Article  MATH  Google Scholar 

  7. Lee, Y.S., Lee, C.W.: Modelling and vibration analysis of misaligned rotor-ball bearing systems. J. Sound Vib. 224, 17–32 (1999). https://doi.org/10.1006/jsvi.1997.1301

    Article  Google Scholar 

  8. Zhao, G., Liu, Z.S., Chen, F.: Meshing force of misaligned spline coupling and the influence on rotor system. Int. J. Rotating Mach. 2008, 321308 (2008). https://doi.org/10.1155/2008/321308

    Article  Google Scholar 

  9. Wu, K., Liu, Z.W., Ding, Q.: Vibration responses of rotating elastic coupling with dynamic spatial misalignment. Mech. Mach. Theory 151, 103916 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103916

    Article  Google Scholar 

  10. Liu, Y., Zhao, Y.L., Li, J.T., Lu, H.H., Ma, H.: Feature extraction method based on NOFRFs and its application in faulty rotor system with slight misalignment. Nonlinear Dyn 99, 1763–1777 (2020). https://doi.org/10.1007/s11071-019-05340-8

    Article  Google Scholar 

  11. Al-Hussain, K.M., Redmond, I.: Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment. J. Sound Vib. 249, 483–498 (2002). https://doi.org/10.1006/jsvi.2001.3866

    Article  Google Scholar 

  12. Al-Hussain, K.M.: Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment. J. Sound Vib. 266, 217–234 (2003). https://doi.org/10.1016/S0022-460X(02)01627-9

    Article  Google Scholar 

  13. Lees, A.W.: Misalignment in rigidly coupled rotors. J. Sound Vib. 305, 261–271 (2007). https://doi.org/10.1016/j.jsv.2007.04.008

    Article  Google Scholar 

  14. Patel, T.H., Darpe, A.K.: Vibration response of misaligned rotors. J. Sound Vib. 325, 609–628 (2009). https://doi.org/10.1016/j.jsv.2009.03.024

    Article  Google Scholar 

  15. Sarkar, S., Nandi, A., Neogy, S., Dutt, J.K., Kundra, T.K.: Finite element analysis of misaligned rotors on oil-film bearings. Sadhana 35, 45–61 (2010). https://doi.org/10.1007/s12046-010-0005-1

    Article  MATH  Google Scholar 

  16. da Silva Tuckmantel, F.W., Cavalca, K.L.: Vibration signatures of a rotor-coupling-bearing system under angular misalignment. Mech. Mach. Theory 133, 559–583 (2019). https://doi.org/10.1016/j.mechmachtheory.2018.12.014

    Article  Google Scholar 

  17. Srinivas, R.S., Tiwari, R., Babu, C.K.: Modeling, analysis, and identification of parallel and angular misalignments in a coupled rotor-bearing-active magnetic bearing system. J. Dyn. Syst. Meas. Contr. 143, 011007 (2021). https://doi.org/10.1115/1.4048352

    Article  Google Scholar 

  18. Lal, M.: Modeling and estimation of speed dependent bearing and coupling misalignment faults in a turbine generator system. Mech. Syst. Signal Process. 151, 107365 (2021). https://doi.org/10.1016/j.ymssp.2020.107365

    Article  Google Scholar 

  19. Bouaziz, S., Messaoud, N.B., Mataar, M., Fakhfakh, T., Haddar, M.: A theoretical model for analyzing the dynamic behavior of a misaligned rotor with active magnetic bearings. Mechatronics 21, 899–907 (2011). https://doi.org/10.1016/j.mechatronics.2011.05.001

    Article  Google Scholar 

  20. Patel, T.H., Darpe, A.K.: Experimental investigations on vibration response of misaligned rotors. Mech. Syst. Signal Process. 23, 2236–2252 (2009). https://doi.org/10.1016/j.ymssp.2009.04.004

    Article  Google Scholar 

  21. Lu, K., Jin, Y.L., Huang, P.F., Zhang, F., Zhang, H.P., Fu, C., Chen, Y.S.: The applications of POD method in dual rotor-bearing systems with coupling misalignment. Mech. Syst. Signal Process. 150, 107236 (2021). https://doi.org/10.1016/j.ymssp.2020.107236

    Article  Google Scholar 

  22. Jalan, A.K., Mohanty, A.R.: Model based fault diagnosis of a rotor–bearing system for misalignment and unbalance under steady-state condition. J. Sound Vib. 327, 604–622 (2009). https://doi.org/10.1016/j.jsv.2009.07.014

    Article  Google Scholar 

  23. Wang, N.F., Jiang, D.X.: Vibration response characteristics of a dual-rotor with unbalance-misalignment coupling faults: theoretical analysis and experimental study. Mech. Mach. Theory 125, 207–219 (2018). https://doi.org/10.1016/j.mechmachtheory.2018.03.009

    Article  Google Scholar 

  24. Desouki, M., Sassi, S., Renno, J., Gowid, S.A.: Dynamic response of a rotating assembly under the coupled effects of misalignment and imbalance. Shock Vib. (2020). https://doi.org/10.1155/2020/8819676

    Article  Google Scholar 

  25. Fu, X.Q., Jia, W.T., Xu, H., Song, S.L.: Imbalance–misalignment–rubbing coupling faults in hydraulic turbine vibration. Optik 127, 3708–3712 (2016). https://doi.org/10.1016/j.ijleo.2016.01.006

    Article  Google Scholar 

  26. Jin, Y.L., Liu, Z.W., Yang, Y., Li, F.S., Chen, Y.S.: Nonlinear vibrations of a dual-rotor-bearing-coupling misalignment system with blade-casing rubbing. J. Sound Vib. 497, 115948 (2021). https://doi.org/10.1016/j.jsv.2021.115948

    Article  Google Scholar 

  27. Nataraj, M., Baskaran, G.: Experimental investigation of misalignment and looseness in rotor bearing system using Bartlett Power Spectral Density. Journal of Scientific & Industrial Research 76, 308–313 (2017). http://nopr.niscair.res.in/handle/123456789/41597

  28. Ma, H., Wang, X.L., Niu, H.Q., Wen, B.C.: Oil-film instability simulation in an overhung rotor system with flexible coupling misalignment. Arch. Appl. Mech. 85, 893–907 (2015). https://doi.org/10.1007/s00419-015-0998-3

    Article  Google Scholar 

  29. Li, Z.G., Jiang, J., Tian, Z.: Stochastic dynamics of a nonlinear misaligned rotor system subject to random fluid-induced forces. J. Comput. Nonlinear Dyn. 12, 011004 (2017). https://doi.org/10.1115/1.4034124

    Article  Google Scholar 

  30. Hinton, W.R.: An investigation into the causes of ball bearing failures in types P2 and P3 engine-driven generators. Wear 16, 3–42 (1970). https://doi.org/10.1016/0043-1648(70)90261-9

    Article  Google Scholar 

  31. Crawford, T.S.: The experimental determination of ball bearing cage stress. Wear 16, 43–52 (1970). https://doi.org/10.1016/0043-1648(70)90262-0

    Article  Google Scholar 

  32. Xu, R., Shen, X. S., Fan, Q., Wang, X. Q., Chen, Y.: Failure analysis of aeroengine spindle ball bearing. Bearing, 20–24 (2012). https://doi.org/10.19533/j.issn1000-3762.2012.06.009. (in Chinese)

  33. Ertas, B.H., Vance, J.M.: The effect of static and dynamic misalignment on ball bearing radial stiffness. J. Propul. Power 20, 634–647 (2004). https://doi.org/10.2514/1.11462

    Article  Google Scholar 

  34. Liao, N.T., Lin, J.F.: An analysis of misaligned single-row angular-contact ball bearing. J. Mech. Des. 126, 370–374 (2004). https://doi.org/10.1115/1.1667891

    Article  Google Scholar 

  35. Zhang, Y.F., Fang, B., Kong, L.F., Li, Y.: Effect of the ring misalignment on the service characteristics of ball bearing and rotor system. Mech. Mach. Theory 151, 103889 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103889

    Article  Google Scholar 

  36. Wen, C.W., Meng, X.H., Lyu, B.G., Gu, J.M., Xiao, L.: Influence of angular misalignment on the tribological performance of high-speed micro ball bearings considering full multibody interactions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 235, 1168–1189 (2021). https://doi.org/10.1177/1350650120948292

    Article  Google Scholar 

  37. Yang, Z.C., Zhang, Y., Zhang, K., Li, S.H.: Wear analysis of angular contact ball bearing in multiple-bearing spindle system subjected to uncertain initial angular misalignment. J. Tribol. 143, 091703 (2021). https://doi.org/10.1115/1.4049258

    Article  Google Scholar 

  38. Yang, L.H., Xu, T.F., Xu, H.L., Wu, Y.: Mechanical behavior of double-row tapered roller bearing under combined external loads and angular misalignment. Int. J. Mech. Sci. 142–143, 561–574 (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.056

    Article  Google Scholar 

  39. Zheng, J.Y., Ji, J.C., Yin, S., Tong, V.C.: Internal loads and contact pressure distributions on the main shaft bearing in a modern gearless wind turbine. Tribol. Int. 141, 105960 (2020). https://doi.org/10.1016/j.triboint.2019.105960

    Article  Google Scholar 

  40. Xu, T.F., Yang, L.H., Wu, W., Wang, K.: Effect of angular misalignment of inner ring on the contact characteristics and stiffness coefficients of duplex angular contact ball bearings. Mech. Mach. Theory 157, 104178 (2021). https://doi.org/10.1016/j.mechmachtheory.2020.104178

    Article  Google Scholar 

  41. Li, X.H., Lv, Y.F., Yan, K., Liu, J., Hong, J.: Study on the influence of thermal characteristics of rolling bearings and spindle resulted in condition of improper assembly. Appl. Therm. Eng. 114, 221–233 (2017). https://doi.org/10.1016/j.applthermaleng.2016.11.194

    Article  Google Scholar 

  42. Oktaviana, L., Tong, V.C., Hong, S.W.: Skidding analysis of angular contact ball bearing subjected to radial load and angular misalignment. J. Mech. Sci. Technol. 33, 837–845 (2019). https://doi.org/10.1007/s12206-019-0140-5

    Article  Google Scholar 

  43. Yi, J., Pang, B.T., Liu, H., Wang, F.T., Ji, B.W., Jing, M.Q.: Influence of misalignment on nonlinear dynamic characteristics for matched bearings-rotor system. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 228, 172–181 (2014). https://doi.org/10.1177/1464419313520143

    Article  Google Scholar 

  44. Parmar, V., Saran, V.H., Harsha, S.: Effect of dynamic misalignment on the vibration response, trajectory followed and defect-depth achieved by the rolling-elements in a double-row spherical rolling-element bearing. Mech. Mach. Theory 162, 104366 (2021). https://doi.org/10.1016/j.mechmachtheory.2021.104366

    Article  Google Scholar 

  45. Yang, R., Jin, Y., Hou, L., Chen, Y.S.: Study for ball bearing outer race characteristic defect frequency based on nonlinear dynamics analysis. Nonlinear Dyn 90, 781–796 (2017). https://doi.org/10.1007/s11071-017-3692-x

    Article  Google Scholar 

  46. Hou, L., Chen, Y.S., Cao, Q.J., Zhang, Z.Y.: Turning maneuver caused response in an aircraft rotor-ball bearing system. Nonlinear Dyn 79, 229–240 (2015). https://doi.org/10.1007/s11071-014-1659-8

    Article  Google Scholar 

  47. Zhu, H.M., Chen, W.F., Zhu, R.P., Zhang, L., Gao, J., Liao, M.J.: Dynamic analysis of a flexible rotor supported by ball bearings with damping rings based on FEM and lumped mass theory. J. Central South Univ. 27, 3684–3701 (2020). https://doi.org/10.1007/s11771-020-4510-z

    Article  Google Scholar 

  48. Liew, H.V., Lim, T.C.: Analysis of time-varying rolling element bearing characteristics. J. Sound Vib. 283, 1163–1179 (2005). https://doi.org/10.1016/j.jsv.2004.06.022

    Article  Google Scholar 

  49. Petersen, D., Howard, C., Prime, Z.: Varying stiffness and load distributions in defective ball bearings: analytical formulation and application to defect size estimation. J. Sound Vib. 337, 284–300 (2015). https://doi.org/10.1016/j.jsv.2014.10.004

    Article  Google Scholar 

  50. Yang Y, Wu XL, Xu YQ, Yang YR, Cao DQ. (2021) Vibration behaviour of a geometrically nonlinear rotor under misalignment-unbalance coupled fault. J Vib. Shock; 40:45–52.https://doi.org/10.13465/j.cnki.jvs.2021.07.006 (in Chinese

  51. Luo, Y.G., Wang, P.F., Jia, H.F., Huang, F.C.: Dynamic characteristics analysis of a seal-rotor system with rub-impact fault. J. Comput. Nonlinear Dyn. 16, 081003 (2021). https://doi.org/10.1115/1.4051185

    Article  Google Scholar 

  52. Wang, P.F., Xu, H.Y., Ma, H., Han, H.Z., Yang, Y.: Effects of three types of bearing misalignments on dynamic characteristics of planetary gear set-rotor system. Mech. Syst. Signal Process. 169, 108736 (2022). https://doi.org/10.1016/j.ymssp.2021.108736

    Article  Google Scholar 

  53. Lin, J.Z., Zhao, Y.L., Wang, P.F., Wang, Y.Y., Han, Q.K., Ma, H.: Nonlinear responses of a rotor-bearing-seal system with pedestal looseness. Shock. Vib. 2021, 9937700 (2021). https://doi.org/10.1155/2021/9937700

    Article  Google Scholar 

  54. Liu, J., Shao, Y.M.: Dynamic modeling for rigid rotor bearing systems with a localized defect considering additional deformations at the sharp edges. J. Sound Vib. 398, 84–102 (2017). https://doi.org/10.1016/j.jsv.2017.03.007

    Article  Google Scholar 

  55. Liu, J.: A comprehensive comparative investigation of frictional force models for dynamics of rotor-bearing systems. J. Central South Univ. 27, 1770–1779 (2020). https://doi.org/10.1007/s11771-020-4406-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the China North Vehicle Research Institute on the project. This work was supported by the Basic Research Project (Grant No. 20195208003).

Funding

Professor Hui Ma has China North Vehicle Research Institute (20195208003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Xu, H., Yang, Y. et al. Dynamic characteristics of ball bearing-coupling-rotor system with angular misalignment fault. Nonlinear Dyn 108, 3391–3415 (2022). https://doi.org/10.1007/s11071-022-07451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07451-1

Keywords

Navigation