Skip to main content
Log in

Effects of hyperpolarization-active cation current (Ih) on sublinear dendritic integration under applied electric fields

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Evidence shows that distal dendritic polarization induced by electrical fields (EFs) can affect sublinear dendritic integration of AMPA synaptic inputs via modulating the amplitude of excitatory postsynaptic potential that is also influenced by subthreshold active hyperpolarization-active cation current (\(I_{\text{h}}\)). However, it remains unclear how \(I_{\text{h}}\) participates in EF-regulated dendritic integration and then affects the neural input/output relationship. To this end, a two-compartment model was established to depict the effect of \(I_{\text{h}}\) on EF-regulated sublinear dendritic integration as well as its influence on the initiation of action potentials. With the singular perturbation method we found that the equilibrium mapping of the fast subsystem can serve as the asymptotic subthreshold input/output function for EF-regulated sublinear dendritic integration in the presence of \(I_{\text{h}}\). Both theoretical and simulation results showed that the EF-regulated sublinear dendritic integration in the presence of \(I_{\text{h}}\), depending on the biophysical properties of \(I_{\text{h}}\) including conductance and steady-state activation function, becomes more pronounced sublinear for anodal EF stimulation while is more linear for cathodal stimulation. Further, the presence of \(I_{\text{h}}\), independent of EF polarities, reduces the sensitivity of EF modulation effect on dendritic integration via diminishing EF-induced dendritic polarizations. By identifying the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation in the presence of \(I_{\text{h}}\), we found that \(I_{\text{h}}\) inhibits the initiation of action potential no matter of EF polarities, which is, respectively, attributed to the \(I_{\text{h}}\) activation-induced more pronounced sublinear dendritic integration in the presence of anodal EF and the \(I_{\text{h}}\) inactivation-induced larger somatic hyperpolarization in the case of cathodal EF. These findings suggest that the specific modulatory influence of EF on brain activities not only depends on the EF parameters but also relies on the neural intrinsic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brunoni, A.R., Moffa, A.H., Sampaio-Junior, B., Borrione, L., et al.: Trial of electrical direct-current therapy versus escitalopram for depression. N. Engl. J. Med. 376(26), 2523–2533 (2017). https://doi.org/10.1056/NEJMoa1612999

    Article  Google Scholar 

  2. Szymkowicz, S.M., McLaren, M.E., Suryadevara, U., Woods, A.J.: Transcranial direct current stimulation use in the treatment of neuropsychiatric disorders: a brief review. Psychiatr. Ann. 46(11), 642–646 (2016). https://doi.org/10.3928/00485713-20161006-01

    Article  Google Scholar 

  3. Wagner, T., Valero-Cabre, A., Pascual-Leone, A.: Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 9, 527–565 (2007). https://doi.org/10.1146/annurev.bioeng.9.061206.133100

    Article  Google Scholar 

  4. Flöel, A.: tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 85(Pt 3), 934–947 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.098

    Article  Google Scholar 

  5. Schlaug, G., Renga, V., Nair, D.: Transcranial direct current stimulation in stroke recovery. Arch. Neurol. 65(12), 1571–1576 (2008). https://doi.org/10.1001/archneur.65.12.1571

    Article  Google Scholar 

  6. Conforto, A.B., Servinsckins, L., de Paiva, J.P.Q., Amaro, E., et al.: Safety of cathodal transcranial direct current stimulation early after ischemic stroke. Brain Stimul. 12(2), 374–376 (2018). https://doi.org/10.1016/j.brs.2018.11.009

    Article  Google Scholar 

  7. Jackson, M.P., Rahman, A., Lafon, B., Kronberg, G., et al.: Animal models of transcranial direct current stimulation: methods and mechanisms. Clin. Neurophysiol. 127(11), 3425–3454 (2016). https://doi.org/10.1016/j.clinph.2016.08.016

    Article  Google Scholar 

  8. Bikson, M., Inoue, M., Akiyama, H., Deans, J.K., et al.: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J. Physiol. 557(Pt. 1), 175–190 (2004). https://doi.org/10.1113/jphysiol.2003.055772

    Article  Google Scholar 

  9. Radman, T., Ramos, R.L., Brumberg, J.C., Bikson, M.: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul. 2(4), 215–228 (2009). https://doi.org/10.1016/j.brs.2009.03.007

    Article  Google Scholar 

  10. Reato, D., Rahman, A., Bikson, M., Parra, L.C.: Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 30(45), 15067–15079 (2010). https://doi.org/10.1523/jneurosci.2059-10.2010

    Article  Google Scholar 

  11. Kronberg, G., Bridi, M., Abel, T., Bikson, M., Parra, L.C.: Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimul. 10(1), 51–58 (2016). https://doi.org/10.1016/j.brs.2016.10.001

    Article  Google Scholar 

  12. Yi, G.S., Wei, X.L., Wang, J., Deng, B., Che, Y.Q.: Modulations of dendritic Ca2+ spike with weak electric fields in layer 5 pyramidal cells. Neural Netw. 110, 8–18 (2019). https://doi.org/10.1016/j.neunet.2018.10.013

    Article  Google Scholar 

  13. Radman, T., Su, Y., An, J.H., Bikson, M.: Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. J. Neurosci. 27(11), 3030–3036 (2007). https://doi.org/10.1523/jneurosci.0095-07.2007

    Article  Google Scholar 

  14. Rahman, A., Lafon, B., Parra, L.C., Bikson, M.: Direct current stimulation boosts synaptic gain and cooperativity in vitro. J. Physiol. 595(11), 3535–3547 (2017). https://doi.org/10.1113/jp273005

    Article  Google Scholar 

  15. Lafon, B., Rahman, A., Bikson, M., Parra, L.C.: Direct current stimulation alters neuronal input/output function. Brain Stimul. 10(1), 36–45 (2017). https://doi.org/10.1016/j.brs.2016.08.014

    Article  Google Scholar 

  16. Fan, Y.Q., Wei, X.L., Yi, G.S., Lu, M.L., et al.: Asymptotic input-output relationship predicts electric field effect on sublinear dendritic integration of AMPA synapses. Neural Comput. 33, 1–37 (2021). https://doi.org/10.1162/neco_a_01438

    Article  MathSciNet  MATH  Google Scholar 

  17. Tran-Van-Minh, A., Cazé, R.D., Abrahamsson, T., Cathala, L., et al.: Contribution of sublinear and supralinear dendritic integration to neuronal computations. Front. Cell. Neurosci. 9, 67 (2015). https://doi.org/10.3389/fncel.2015.00067

    Article  Google Scholar 

  18. Kole, M.H.P., Hallermann, S., Stuart, G.J.: Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output. J. Neurosci. 26(6), 1677–1687 (2006). https://doi.org/10.1523/jneurosci.3664-05.2006

    Article  Google Scholar 

  19. Harnett, M.T., Magee, J.C., Williams, S.R.: Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons. J. Neurosci. 35(3), 1024–1037 (2015). https://doi.org/10.1523/jneurosci.2813-14.2015

    Article  Google Scholar 

  20. Magee, J.C.: Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18(19), 7613–7624 (1998). https://doi.org/10.1523/jneurosci.18-19-07613.1998

    Article  Google Scholar 

  21. Williams, S.R., Stuart, G.J.: Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. J. Neurophysiol. 83(5), 3177–3182 (2000). https://doi.org/10.1152/jn.2000.83.5.3177

    Article  Google Scholar 

  22. George, M.S., Abbott, L.F., Siegelbaum, S.A.: HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K(+) channels. Nat. Neurosci. 12, 577–584 (2009). https://doi.org/10.1038/nn.2307

    Article  Google Scholar 

  23. Migliore, M., Miglore, R.: Know your current I(h): interaction with a shunting current explains the puzzling effects of its pharmacological or pathological modulations. PLoS ONE 7(5), e36867 (2012). https://doi.org/10.1371/journal.pone.0036867

    Article  Google Scholar 

  24. Toloza, E.H.S., Negahbani, E., Fröhlich, F.: Ih interacts with somato-dendritic structure to determine frequency response to weak alternating electric field stimulation. J. Neurophysiol. 119(3), 1029–1036 (2017). https://doi.org/10.1152/jn.00541.2017

    Article  Google Scholar 

  25. Hao, X.M., Xu, R., Chen, A.Q., Sun, F.J., et al.: Endogenous HCN channels modulate the firing activity of globus pallidus neurons in parkinsonian animals. Front. Aging Neurosc. 11, 190 (2019). https://doi.org/10.3389/fnagi.2019.00190

    Article  Google Scholar 

  26. Yi, G.S., Wang, J., Wei, X.L., Tsang, K.M.: Exploring how extracellular electric field modulates neuron activity through dynamical analysis of a two-compartment neuron model. J. Comput. Neurosci. 36(3), 383–399 (2014). https://doi.org/10.1007/s10827-013-0479-z

    Article  MathSciNet  Google Scholar 

  27. Park, E.H., So, P., Barreto, E., Gluckman, B.J., Schiff, S.J.: Electric field modulation of synchronization in neuronal networks. Neurocomputing 52–54, 169–175 (2003). https://doi.org/10.1016/S0925-2312(02)00820-2

    Article  Google Scholar 

  28. Park, E.H., Barreto, E., Gluckman, B.J., Schiff, S.J., So, P.: A model of the effects of applied electric fields on neuronal synchronization. J. Comput. Neurosci. 19(1), 53–70 (2005). https://doi.org/10.1007/s10827-005-0214-5

    Article  MathSciNet  Google Scholar 

  29. Sarid, L., Feldmeyer, D., Gidon, A., Sakmann, B., Segev, I.: Contribution of intracolumnar layer 2/3-to-layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex. Cereb. Cortex 25, 849–858 (2013). https://doi.org/10.1093/cercor/bht268

    Article  Google Scholar 

  30. Yi, G.S., Wang, J., Deng, B., Wei, X.L.: Morphology controls how hippocampal CA1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study. Sci. Rep. 7(1), 3210 (2017). https://doi.org/10.1038/s41598-017-03547-6

    Article  Google Scholar 

  31. Cavarretta, F., Carnevale, N.T., Tegolo, D., Migliore, M.: Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: Implications for power line emissions. Front. Cell. Neurosci. 8, 310 (2014). https://doi.org/10.3389/fncel.2014.00310

    Article  Google Scholar 

  32. Larkum, M.E., Nevian, T., Sandler, M., Polsky, A., Schiller, J.: Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325(5941), 756–760 (2009). https://doi.org/10.1126/science.1171958

    Article  Google Scholar 

  33. Berzhanskaya, J., Chernyy, N., Gluckman, B.J., Schiff, S.J., Ascoli, G.A.: Modulation of hippocampal rhythms by subthreshold electric fields and network topology. J. Comput. Neurosci. 34(3), 369–389 (2013). https://doi.org/10.1007/s10827-012-0426-4

    Article  MathSciNet  Google Scholar 

  34. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9(6), 1179–1209 (1997)

    Article  Google Scholar 

  35. Poleg-Polsky, A.: Effects of neural morphology and input distribution on synaptic processing by global and focal NMDA-spikes. PLoS ONE 10(10), e0140254 (2015). https://doi.org/10.1371/journal.pone.0140254

    Article  Google Scholar 

  36. MeyerBase, A., Ohl, F., Scheich, H.: Singular perturbation analysis of competitive neural networks with different time scales. Neural Comput. 8(8), 1731–1742 (1996). https://doi.org/10.1162/neco.1996.8.8.1731

    Article  Google Scholar 

  37. Kuznetsov, Y.A., Muratori, S., Rinaldi, S.: Homoclinic bifurcations in slow-fast second order systems. Nonlinear Anal. Theory Methods Appl. 25(7), 747–762 (1995). https://doi.org/10.1016/0362-546X(94)E0005-2

    Article  MathSciNet  MATH  Google Scholar 

  38. Longordo, F., To, M.S., Ikeda, K., Stuart, G.J.: Sublinear integration underlies binocular processing in primary visual cortex. Nat. Neurosci. 16(6), 714–723 (2013). https://doi.org/10.1038/nn.3394

    Article  Google Scholar 

  39. Ceballos, C.C., Pena, R.F.O., Roque, A.C.: Impact of the activation rate of the hyperpolarization-activated current I-h on the neuronal membrane time constant and synaptic potential duration. The Eur. Phys. J. Special Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00176-z

    Article  Google Scholar 

  40. Berger, T., Larkum, M.E., Luscher, H.R.: High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J. Neurophysiol. 85(2), 855–868 (2001). https://doi.org/10.1152/jn.2001.85.2.855

    Article  Google Scholar 

  41. Cazé, R.D., Humphries, M., Gutkin, B.: Passive dendrites enable single neurons to compute linearly non-separable functions. Plos Comput. Biol. 9(2), e1002867 (2013). https://doi.org/10.1371/journal.pcbi.1002867

    Article  MathSciNet  Google Scholar 

  42. Tsay, D., Dudman, J.T., Siegelbaum, S.A.: HCN1 channels constrain synaptically evoked Ca2+ spikes in distal dendrites of CA1 pyramidal neurons. Neuron 56(6), 1076–1089 (2007). https://doi.org/10.1016/j.neuron.2007.11.015

    Article  Google Scholar 

  43. Nolan, M.F., Malleret, G., Dudman, J.T., Buhl, D.L., et al.: A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119, 719–732 (2004). https://doi.org/10.1016/s0092-8674(04)01055-4

    Article  Google Scholar 

  44. Santoro, B., Lee, J.Y., Englot, D.J., Gildersleeve, S., et al.: Increased seizure severity and seizure-related death in mice lacking HCN1 channels. Epilepsia 51(8), 1624–1627 (2010). https://doi.org/10.1111/j.1528-1167.2010.02554.x

    Article  Google Scholar 

  45. Giocomo, L.M., Hussaini, S.A., Zheng, F., Kandel, E.R., et al.: Grid cells use HCN1 channels for spatial scaling. Cell 147, 1159–1170 (2011). https://doi.org/10.1016/j.cell.2011.08.051

    Article  Google Scholar 

  46. Hussaini, S.A., Kempadoo, K.A., Thuault, S.J., Siegelbaum, S.A., Kandel, E.R.: Increased size and stability of CA1 and CA3 place fields in HCN1 knockout mice. Neuron 72, 643–653 (2011). https://doi.org/10.1016/j.neuron.2011.09.007

    Article  Google Scholar 

  47. Tranchina, D., Nicholson, C.: A model for the polarization of neurons by extrinsically applied electric fields. Biophys. J . 50(6), 1139–1156 (1986). https://doi.org/10.1016/s0006-3495(86)83558-5

    Article  Google Scholar 

  48. Smith, S.L., Smith, I.T., Branco, T., Häusser, M.: Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503(7474), 115–120 (2013). https://doi.org/10.1038/nature12600

    Article  Google Scholar 

  49. Gasparini, S., DiFrancesco, D.: Action of serotonin on the hyperpolarization-activated cation current (Ih) in rat CA1 hippocampal neurons. Eur. J. Neurosci. 11, 3093–3100 (1999)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant 62171312, 61771330, 62071324, and the Tianjin Municipal Natural Science Foundation under Grant 19JCQNJC01200.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by YF. The first draft of the manuscript was written by YF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guosheng Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

All data generated or used during this study are included in this published article and its supplementary information files.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11071_2022_7427_MOESM1_ESM.docx

Supplementary file1. In Sect. 1, we introduced the detailed parameters of STC-PYN-AMPA with S1 Table. In Sect. 2, we introduced the detailed parameters of active ionic currents of a biophysical layer 5 pyramidal neuron with S2 Table. In Sect. 3, we introduced the detailed parameters of multi current clamp stimulation used for repolarizing resting potential as changes with S3 Table. (DOCX 99 KB)

11071_2022_7427_MOESM2_ESM.docx

Supplementary file2. In Sect. 1, we showed the effect of on EF-regulated dendritic integration of NMDA synapses with the layer 5 pyramidal neuron introduced in Materials and Methods, as shown in S1 Fig. In Sect. 2, we studied the effect of on EF-regulated sublinear dendritic integration with a biophysical pyramidal model in CA1 that has increasing from soma to distal dendrites, as shown in S2 Fig. (DOCX 153 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wei, X., Yi, G. et al. Effects of hyperpolarization-active cation current (Ih) on sublinear dendritic integration under applied electric fields. Nonlinear Dyn 108, 4335–4356 (2022). https://doi.org/10.1007/s11071-022-07427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07427-1

Keywords

Navigation