Skip to main content
Log in

Modulation of hippocampal rhythms by subthreshold electric fields and network topology

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Theta (4–12 Hz) and gamma (30–80 Hz) rhythms are considered important for cortical and hippocampal function. Although several neuron types are implicated in rhythmogenesis, the exact cellular mechanisms remain unknown. Subthreshold electric fields provide a flexible, area-specific tool to modulate neural activity and directly test functional hypotheses. Here we present experimental and computational evidence of the interplay among hippocampal synaptic circuitry, neuronal morphology, external electric fields, and network activity. Electrophysiological data are used to constrain and validate an anatomically and biophysically realistic model of area CA1 containing pyramidal cells and two interneuron types: dendritic- and perisomatic-targeting. We report two lines of results: addressing the network structure capable of generating theta-modulated gamma rhythms, and demonstrating electric field effects on those rhythms. First, theta-modulated gamma rhythms require specific inhibitory connectivity. In one configuration, GABAergic axo-dendritic feedback on pyramidal cells is only effective in proximal but not distal layers. An alternative configuration requires two distinct perisomatic interneuron classes, one exclusively receiving excitatory contacts, the other additionally targeted by inhibition. These observations suggest novel roles for particular classes of oriens and basket cells. The second major finding is that subthreshold electric fields robustly alter the balance between different rhythms. Independent of network configuration, positive electric fields decrease, while negative fields increase the theta/gamma ratio. Moreover, electric fields differentially affect average theta frequency depending on specific synaptic connectivity. These results support the testable prediction that subthreshold electric fields can alter hippocampal rhythms, suggesting new approaches to explore their cognitive functions and underlying circuitry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CA1:

cornus ammonis area 1

CA3:

cornus ammonis area 3

SC:

Schaffer Collateral

alv.:

alveus

s.o.:

stratum oriens

s.p.:

stratum pyramidale

s.r.:

stratum radiatum

s.l.m.:

stratum lacunosum moleculare

O-bi:

Oriens-bistratified

OLM:

Oriens-lacunosum moleculare

ISI:

interspike interval

IBI:

interburst interval

CCK:

Cholecystokinin

IPSC/IPSP:

Inhibitory postsynaptic currents/potentials

EPSC/EPSP:

Excitatory postsynaptic currents/potentials

GABA:

4-aminobutanoic acid

AMPA:

alpha- Amino −3 hydroxyl −5 Methyl- 4- isoxazole-Propanoic acid

NMDA:

N-Methyl-D-aspartic acid

P:

pyramidal cell (excitatory)

O:

oriens cell (inhibitory, dendritic targeting, O-Bi/OLM)

B:

basket cell (inhibitory, perisomatic targeting, B1/B2)

OBp:

Network configuration with strong O-B connections and weak O-P connections

OPb:

Network configuration with weak O-B connections and strong O-P connections

B-vert:

basket cell with vertically oriented dendrites

O-vert:

oriens cell with vertically oriented dendrites

References

  • Ali, A. B., & Thomson, A. M. (1998b). Facilitating pyramid to horizontal oriens-alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus. The Journal of Physiology, 507(1), 185–199.

    Article  CAS  Google Scholar 

  • Ali, A. B., Deuchars, J., Pawelzik, H., & Thomson, A. M. (1998a). CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices. The Journal of Physiology, 507(1), 201–217.

    Article  CAS  Google Scholar 

  • Anastassiou, C. A., Montgomery, S. M., Barahona, M., Buzsáki, G., & Koch, C. (2010). The effect of spatially inhomogeneous extracellular electric fields on neurons. Journal of Neuroscience, 30(5), 1925–1936.

    Article  PubMed  CAS  Google Scholar 

  • Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho. org: a central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247–9251.

    Article  PubMed  CAS  Google Scholar 

  • Bédard, C., Rodrigues, S., Roy, N., Contreras, D., & Destexhe, A. (2010). Evidence for frequency-dependent extracellular impedance from the transfer function between extracellular and intracellular potentials: intracellular-LFP transfer function. Journal of Computational Neuroscience, 29(3), 389–403.

    Article  PubMed  Google Scholar 

  • Berzhanskaya, J., Chernyy, N., Gluckman, B. J., & Schiff, S. J. (2005). Mechanisms of electric field suppression of neuronal activity in a hippocampal slice model of epilepsy. Epilepsia, 46(S8), 329.

    Google Scholar 

  • Berzhanskaya, J., Gorchetchnikov, A., & Schiff, S. J. (2007). Switching between gamma and theta: dynamic network control using subthreshold electric fields. Neurocomputing, 70(10–12), 2091–2095.

    Article  PubMed  Google Scholar 

  • Bikson, M., McIntyre, C. C., Inoue, M., Akiyama, H., Fox, J. E., Grill, W. M., et al. (2002). Effect of uniform DC electric fields on CA1 hippocampal pyramidal neurons. Orlando: Society of Neuroscence Abstracts., 446.1.

    Google Scholar 

  • Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa, H., et al. (2004). Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. The Journal of Physiology, 557(1), 175–190.

    Article  PubMed  CAS  Google Scholar 

  • Börgers, C., Epstein, S., & Kopell, N. J. (2005). Background gamma rhythmicity and attention in cortical local circuits: a computational study. PNAS, 102(19), 7002–7007.

    Article  PubMed  Google Scholar 

  • Buzsaki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325–340.

    Article  PubMed  CAS  Google Scholar 

  • Carnevale N. T., & Hines M. L. (2006). The NEURON Book. Cambridge University Press.

  • Chan, C. Y., & Nicholson, C. (1986). Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. The Journal of Physiology, 371, 89–114.

    PubMed  CAS  Google Scholar 

  • Chan, C. Y., Houndsgaard, J., & Nicholson, C. (1988). Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. The Journal of Physiology, 402, 751–771.

    PubMed  CAS  Google Scholar 

  • Chapman, C. A., & Lacaille, J. C. (1999). Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing. Journal of Neuroscience, 19(19), 8637–8645.

    PubMed  CAS  Google Scholar 

  • Cobb, S. R., Larkman, P. M., Bulters, D. O., Oliver, L., Gill, C. H., & Davies, C. H. (2003). Activation of Ih is necessary for patterning of mGluR and mAChR induced network activity in the hippocampal CA3 region. Neuropharmacology, 44(3), 293–303.

    Article  PubMed  CAS  Google Scholar 

  • Colling, S. B., Stanford, I. M., Traub, R. D., & Jefferys, J. G. (1998). Limbic gamma rhythms. I. Phase-locked oscillations in hippocampal CA1 and subiculum. Journal of Neurophysiology, 80(1), 155–161.

    PubMed  CAS  Google Scholar 

  • Cossart, R., Petanjek, Z., Dumitriu, D., Hirsch, J. C., Ben-Ari, Y., Esclapez, M., et al. (2006). Interneurons targeting similar layers receive synaptic inputs with similar kinetics. Hippocampus, 16(4), 408–420.

    Article  PubMed  Google Scholar 

  • Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A., & Buzsaki, G. (1999). Fast network oscillations in the hippocampal CA1 region of the behaving rat. Journal of Neuroscience, 19(16), RC20.

    PubMed  CAS  Google Scholar 

  • Csicsvari, J., Jamieson, B., Wise, K. D., & Buzsaki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron, 37(2), 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Deans, J. K., Powell, A. D., & Jefferys, J. G. (2007). Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. The Journal of Physiology, 583(Pt 2), 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Dobrunz, L. E., Huang, E. P., & Stevens, C. F. (1997). Very short-term plasticity in hippocampal synapses. PNAS, 94(26), 14843–14847.

    Article  PubMed  CAS  Google Scholar 

  • Fellous, J. M., & Sejnowski, T. J. (2000). Cholinergic induction of oscillations in the hippocampal slice in the slow (0.5–2 Hz), theta (5–12 Hz), and gamma (35–70 Hz) bands. Hippocampus, 10(2), 187–197.

    Article  PubMed  CAS  Google Scholar 

  • Fisahn, A., Contractor, A., Traub, R. D., Buhl, E. H., Heinemann, S. F., & McBain, C. J. (2004). Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. Journal of Neuroscience, 24(43), 9658–9668.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, Y., Wittner, L., Freund, T. F., & Gahwiler, B. H. (2002). Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures. The Journal of Physiology, 539(3), 857–868.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T. F. (2003). Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends in Neuroscience, 26(9), 489–495.

    Article  CAS  Google Scholar 

  • Freund, T. F., & Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336(6195), 170–173.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470.

    Article  PubMed  CAS  Google Scholar 

  • Fröhlich, F., & McCormick, D. A. (2010). Endogenous electric fields may guide neocortical network activity. Neuron, 67(1), 129–143.

    Article  PubMed  Google Scholar 

  • Fuchs, E. C., Zivkovic, A. R., Cunningham, M. O., Middleton, S., Lebeau, F. E., Bannerman, D. M., et al. (2007). Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron, 53(4), 591–604.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, M. J., Traub, R. D., LeBeau, F. E., Davies, C. H., Gloveli, T., Buhl, E. H., et al. (2002). A model of atropine-resistant theta oscillations. The Journal of Physiology, 543, 779–793.

    Article  PubMed  CAS  Google Scholar 

  • Gloveli, T., Dugladze, T., Rotstein, H. G., Traub, R. D., Monyer, H., Heinemann, U., et al. (2005a). Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. PNAS, 102(37), 13295–13300.

    Article  CAS  Google Scholar 

  • Gloveli, T., Dugladze, T., Saha, S., Monyer, H., Heinemann, U., Traub, R. D., et al. (2005b). Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro. The Journal of Physiology, 562(1), 131–147.

    Article  CAS  Google Scholar 

  • Gluckman, B. J., Netoff, T. I., Neel, E. J., Ditto, W. L., Spano, M. L., & Schiff, S. J. (1996a). Stochastic resonance in a neuronal network from mammalian brain. Physical Review Letters, 77, 4098–4101.

    Article  CAS  Google Scholar 

  • Gluckman, B. J., Neel, E. J., Netoff, T. I., Ditto, W. L., Spano, M. L., & Schiff, S. J. (1996b). Electric field suppression of epileptiform activity in hippocampal slices. Journal of Neurophysiology, 76, 4202–4205.

    CAS  Google Scholar 

  • Gluckman, B. J., Nguyen, H., Weinstein, S. L., & Schiff, S. J. (2001). Adaptive electric field suppression of epileptic seizures. Journal of Neuroscience, 21, 590–600.

    PubMed  CAS  Google Scholar 

  • Gold, C., Henze, D. A., Koch, C., & Buzsáki, G. (2006). On the origin of the extracellular action potential waveform: A modeling study. Journal of Neurophysiology, 95(5), 3113–3128.

    Google Scholar 

  • Goutagny, R., Jackson, J., & Williams, S. (2009). Self-generated theta oscillations in the hippocampus. Nature Neuroscience, 12(12), 1491–1493.

    Article  PubMed  CAS  Google Scholar 

  • Gulyas, A. I., Hajos, N., & Freund, T. F. (1996). Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. Journal of Neuroscience, 16(10), 3397–3411.

    PubMed  CAS  Google Scholar 

  • Gulyas, A. I., Megias, M., Emri, Z., & Freund, T. F. (1999). Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. Journal of Neuroscience, 19(22), 10082–10097.

    PubMed  CAS  Google Scholar 

  • Hájos, N., & Mody, I. (1997). Synaptic communication among hippocampal interneurons: properties of spontaneous IPSCs in morphologically identified cells. Journal of Neuroscience, 17(21), 8427–8442.

    PubMed  Google Scholar 

  • Harris, K. D., Hirase, H., Leinekugel, X., Henze, D. A., & Buzsáki, G. (2001). Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron, 32(1), 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, D. A., Magee, J. C., Colbert, C. M., & Johnston, D. (1997). K + channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature, 387, 869–875.

    Article  PubMed  CAS  Google Scholar 

  • Katona, I., Acsády, L., & Freund, T. F. (1999). Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience, 88(1), 37–55.

    Article  PubMed  CAS  Google Scholar 

  • Klausberger, T., Magill, P. J., Marton, L. F., Roberts, J. D., Cobden, P. M., Buzsaki, G., et al. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925), 844–848.

    Article  PubMed  CAS  Google Scholar 

  • Klausberger, T., Marton, L. F., Baude, A., Roberts, J. D., Magill, P. J., & Somogyi, P. (2004). Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nature Neuroscience, 7(1), 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Klausberger, T., Marton, L. F., O’Neill, J., Huck, J. H., Dalezios, Y., Fuentealba, P., et al. (2005). Complementary roles of cholecystokinin- and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations. Journal of Neuroscience, 25(42), 9782–9793.

    Article  PubMed  CAS  Google Scholar 

  • Kullmann, D. M. (2011). Interneuron networks in the hippocampus. Current Opinions in Neurobiology, 21(5), 709–716.

    Google Scholar 

  • Kunec, S., Hasselmo, M. E., & Kopell, N. (2005). Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. Journal of Neurophysiology, 94(1), 70–82.

    Article  PubMed  Google Scholar 

  • Li, X., & Ascoli, G. A. (2006). Computational simulation of the input–output relationship in hippocampal pyramidal cells. Journal of Computational Neuroscience, 21(2), 191–209.

    Article  PubMed  Google Scholar 

  • Li, X., & Ascoli, G. A. (2008). Effects of synaptic synchrony on the neuronal input–output relationship. Neural Computation, 20(7), 1717–1731.

    Article  PubMed  Google Scholar 

  • Maccaferri, G. (2005). Stratum oriens horizontal interneurone diversity and hippocampal network dynamics. The Journal of Physiology, 562(1), 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri, G., Roberts, J. D., Szucs, P., Cottingham, C. A., & Somogyi, P. (2000). Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. The Journal of Physiology, 524(1), 91–116.

    Article  PubMed  CAS  Google Scholar 

  • Magee, J. C. (1998). Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. Journal of Neuroscience, 18, 1–12.

    Google Scholar 

  • Magee, J. C., & Carruth, M. (1999). Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 82(4), 1895–1901.

    PubMed  CAS  Google Scholar 

  • Magee, J. C., & Cook, E. P. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3(9), 895–903.

    Article  PubMed  CAS  Google Scholar 

  • Mann, E. O., Radcliffe, C. A., & Paulsen, O. (2005). Hippocampal gamma-frequency oscillations: from interneurones to pyramidal cells, and back. The Journal of Physiology, 562(1), 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Migliore, M., Hoffman, D. A., Magee, J. C., & Johnston, D. (1999). Role of an A-type K + conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. Journal of Computational Neuroscience, 7(1), 5–15.

    Article  PubMed  CAS  Google Scholar 

  • Migliore, M., Messineo, L., & Ferrante, M. (2004). Dendritic Ih selectively blocks temporal summation of unsynchronized sistal inputs in CA1 pyramidal neurons. Journal of Computational Neuroscience, 16(1), 5–13.

    Article  PubMed  CAS  Google Scholar 

  • Migliore, M., Ferrante, M., & Ascoli, G. A. (2005). Signal propagation in oblique dendrites of CA1 pyramidal cells. Journal of Neurophysiology, 94, 4145–4155.

    Article  PubMed  Google Scholar 

  • Morozov, Y., Khalilov, I., Ben-Ari, Y., & Represa, A. (2002). Correlative fluorescence and electron microscopy of biocytin-filled neurons with a preservation of the postsynaptic ultrastructure. Journal of Neuroscience Methods, 117(1), 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Orbán, G., Kiss, T., & Erdi, P. (2006). Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation. Journal of Neurophysiology, 96(6), 2889–2904.

    Article  PubMed  Google Scholar 

  • Oren, I., Mann, E. O., Paulsen, O., & Hájos, N. (2006). Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro. Journal of Neuroscience, 26(39), 9923–9934.

    Article  PubMed  CAS  Google Scholar 

  • Otmakhova, N. A., Otmakhov, N., & Lisman, J. E. (2002). Pathway-specific properties of AMPA and NMDA-mediated transmission in CA1 hippocampal pyramidal cells. Journal of Neuroscience, 22(4), 1199–1207.

    PubMed  CAS  Google Scholar 

  • Ozen, S., Sirota, A., Belluscio, M. A., Anastassiou, C. A., Stark, E., Koch, C., et al. (2010). Transcranial electric stimulation entrains cortical neuronal populations in rats. Neuroscience, 30(34), 11476–11485.

    Article  PubMed  CAS  Google Scholar 

  • Park, E. H., Barreto, E., Gluckman, B. J., Schiff, S. J., & So, P. (2005). A model of the effects of applied electric fields on neuronal synchronization. Journal of Computational Neuroscience, 19(1), 53–70.

    Article  PubMed  Google Scholar 

  • Parra, L., & Bikson, M. (2004). Model of the effect of extracellular fields on spike time coherence. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2(6), 4584–4587.

    Article  Google Scholar 

  • Patenaude, C., Nurse, S., & Lacaille, J. C. (2001). Sensitivity of synaptic GABA(A) receptors to allosteric modulators in hippocampal oriens-alveus interneurons. Synapse, 41(1), 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Poolos, N. P., Migliore, M., & Johnston, D. (2002). Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nature Neuroscience, 5(8), 767–774.

    PubMed  CAS  Google Scholar 

  • Radman, T., Su, Y., An, J. H., Parra, L. C., & Bikson, M. (2007). Spike timing amplifies the effect of electric fields on neurons: implications for endogenous field effects. Journal of Neuroscience, 27(11), 3030–3036.

    Article  PubMed  CAS  Google Scholar 

  • Reato, D., Rahman, A., Bikson, M., & Parra, L. C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience, 30(45), 15067–15079.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, K. A., Gluckman, B. J., Weinstein, S. L., Glosch, C. E., Moon, J. B., Gwinn, R. P., et al. (2003). In vivo modulation of hippocampal epileptiform activity with radial electric fields. Epilepsia, 44(6), 768–777.

    Article  PubMed  Google Scholar 

  • Richardson, K. A., Schiff, S. J., & Gluckman, B. J. (2005). Control of traveling waves in the Mammalian cortex. Physical Review Letters, 94(2), 028103.

    Article  PubMed  Google Scholar 

  • Rotstein, H. G., Pervouchine, D. D., Acker, C. D., Gillies, M. J., White, J. A., Buhl, E. H., et al. (2005). Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. Journal of Neurophysiology, 94(2), 1509–1518.

    Article  PubMed  Google Scholar 

  • Rushton, W. A. H. (1927). The effect upon the threshold for nervous excitation of the length of nerve exposed, and the angle between current and nerve. The Journal of Physiology, 63, 357–377.

    PubMed  CAS  Google Scholar 

  • Schiff, S. J. (2012). Neural control engineering. Cambridge: MIT Press.

    Google Scholar 

  • Sik, A., Penttonen, M., Ylinen, A., & Buzsáki, G. (1995). Hippocampal CA1 interneurons: an in vivo intracellular labeling study. Journal of Neuroscience, 15(10), 6651–6665.

    PubMed  CAS  Google Scholar 

  • Smith, M. A., Ellis-Davies, G. C., & Magee, J. C. (2003). Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. The Journal of Physiology, 548(1), 245–258.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., & Klausberger, T. (2005). Defined types of cortical interneurone structure space and spike timing in the hippocampus. The Journal of Physiology, 562(1), 9–26.

    Article  PubMed  CAS  Google Scholar 

  • Sunderam, S., Chernyy, N., Peixoto, N., Mason, J. P., Weinstein, S. L., Schiff, S. J., et al. (2009). Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model. Journal of Neural Engineering, 6(4), 046009.

    Article  PubMed  Google Scholar 

  • Tiesinga, P. H., Fellous, J. M., José, J. V., & Sejnowski, T. J. (2001). Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus, 11(3), 251–274.

    Article  PubMed  CAS  Google Scholar 

  • Tort, A. B., Rotstein, H. G., Dugladze, T., Gloveli, T., & Kopell, N. J. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. PNAS, 104(33), 13490–13495.

    Article  PubMed  CAS  Google Scholar 

  • Tranchina, D., & Nicholson, C. (1986). A model for the polarization of neurons by extrinsically applied electric fields. Biophysical Journal, 50(6), 1139–1156.

    Article  PubMed  CAS  Google Scholar 

  • Traub, R. D., Bibbig, A., Fisahn, A., LeBeau, F. E., Whittington, M. A., & Buhl, E. H. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. European Journal of Neuroscience, 12(11), 4093–4106.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, S., Hoffman, D. A., Migliore, M., & Johnston, D. (2002). Dendritic K + channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. PNAS, 99(12), 8366–8371.

    Article  PubMed  CAS  Google Scholar 

  • Widmer, H., Ferrigan, L., Davies, C. H., & Cobb, S. R. (2006). Evoked slow muscarinic acetylcholinergic synaptic potentials in rat hippocampal interneurons. Hippocampus, 16(7), 617–628.

    Article  PubMed  CAS  Google Scholar 

  • Williams, S. H., & Johnston, D. (1991). Kinetic properties of two anatomically distinct excitatory synapses in hippocampal CA3 pyramidal neurons. Journal of Neurophysiology, 66(3), 1010–1020.

    PubMed  CAS  Google Scholar 

  • Williams, J. H., & Kauer, J. A. (1997). Properties of carbachol-induced oscillatory activity in rat hippocampus. Journal of Neurophysiology, 78(5), 2631–2640.

    PubMed  CAS  Google Scholar 

  • Wong, T., Zhang, X. L., Asl, M. N., Wu, C. P., Carlen, P. L., & Zhang, L. (2005). Postnatal development of intrinsic GABAergic rhythms in mouse hippocampus. Neuroscience, 134(1), 107–120.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C., Shen, H., Luk, W. P., & Zhang, L. (2002). A fundamental oscillatory state of isolated rodent hippocampus. The Journal of Physiology, 540(Pt 2), 509–527.

    Article  PubMed  CAS  Google Scholar 

  • Wulff, P., Ponomarenko, A. A., Bartos, M., Korotkova, T. M., Fuchs, E. C., Bähner, F., et al. (2009). Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. PNAS, 106(9), 3561–3566.

    Article  PubMed  CAS  Google Scholar 

  • Ylinen, A., Soltész, I., Bragin, A., Penttonen, M., Sik, A., & Buzsáki, G. (1995). Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus, 5(1), 78–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Drs. C. McIntyre and M. Robertson for sharing initial code of extracellular electric field implementation in NEURON, Dr. John L. Baker and Mr. Kerry Brown for feedback on a previous version of the manuscript, and financial support from NIH grants R01 MH50006, K02 MH01493, R01 NS39600, R01 AG25633, R21 NS58816, and ONR grant MURI N00014-10-1-0198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio A. Ascoli.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berzhanskaya, J., Chernyy, N., Gluckman, B.J. et al. Modulation of hippocampal rhythms by subthreshold electric fields and network topology. J Comput Neurosci 34, 369–389 (2013). https://doi.org/10.1007/s10827-012-0426-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-012-0426-4

Keywords

Navigation