Skip to main content
Log in

Spatiotemporal dynamics of a prey–predator model with Allee effect in prey and hunting cooperation in a Holling type III functional response

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we have studied a spatiotemporal prey–predator model with Allee effect in prey and hunting cooperation in predator. In available literature, a prey-dependent functional response is mostly considered to model the prey–predator interaction. But empirical data show that functional response can depend on both prey and predator populations. Here, we have introduced the cooperative hunting in a Holling type III functional response for the predator population and extended the model spatially. Both Turing and non-Turing patterns produced by the diffusion added prey–predator model have been studied in detail. Emphasis is given to the analytical study of the spiral and target patterns applying the amplitude equation through weakly nonlinear analysis. The analytical results are verified with extensive numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  2. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  3. Murray, J.D.: Mathematical Biology. Springer, Heidelberg (1989)

    Book  Google Scholar 

  4. Cui, R.-F., Chen, Q.-H., Chen, J.-X.: Separation of nanoparticles via surfing on chemical wavefronts. Nanoscale 12, 12275–12280 (2020)

    Article  Google Scholar 

  5. Chen, J.X., Chen, Y.G., Kapral, R.: Chemically propelled motors navigate chemical patterns. Adv. Sci. (Weinh.) 5(9), 1800028 (2018). https://doi.org/10.1002/advs.201800028

    Article  Google Scholar 

  6. Aslanidi, O.V., Clayton, R.H., Holden, A.V., Phillips, H.K., Ward, R.J.: Vulnerability to reentry, and drift, stability and breakdown of spiral waves in a linear gradient of \(G_K\) in a Luo–Rudy 1 virtual ventricular tissue. Int. J. Bifurc. Chaos 13, 3865–3871 (2003)

    Article  Google Scholar 

  7. Barkley, D., Kevrekidis, I.G.: A dynamical systems approach to spiral wave dynamics. Chaos 4, 453–460 (1994)

    Article  MathSciNet  Google Scholar 

  8. Barkley, D.: Linear stability analysis of rotating spiral waves in excitable media. Phys. Rev. Lett. 68, 2090–2093 (1992)

    Article  Google Scholar 

  9. Tyson, J.J., Keener, J.P.: Singular perturbation theory of traveling waves in excitable media (a review). Phys. D 32, 327–361 (1988)

    Article  MathSciNet  Google Scholar 

  10. Riaz, S.S., Ray, D.S.: Spiral pattern in chlorite–iodide–malonic acid reaction: a theoretical and numerical study. J. Chem. Phys. 123, 174506(1)-174506(5) (2005)

    Article  Google Scholar 

  11. Ghosh, S., Ray, D.S.: Selecting spatio-temporal patterns by substrate injection in a reaction–diffusion system. Eur. Phys. J. B 99, 1–7 (2015)

    MathSciNet  Google Scholar 

  12. Kuramoto, Y., Koga, S.: Turbulized rotating chemical waves. Prog. Theor. Phys. 3, 1081–1085 (1981)

    Article  Google Scholar 

  13. Kuramoto, Y., Yamada, T.: Pattern formation in oscillatory chemical reactions. Prog. Theor. Phys. 56, 724–740 (1976)

    Article  MathSciNet  Google Scholar 

  14. Cohen, D.S., Neu, J.C., Rosales, R.R.: Rotating spiral wave solutions of reaction–diffusion equations. SIAM J. Appl. Math. 35, 536–547 (1978)

    Article  MathSciNet  Google Scholar 

  15. Duffy, M.R., Britton, N.F., Murray, J.D.: Spiral wave solutions of practical reaction–diffusion systems. SIAM J. Appl. Math. 39, 8–13 (1980)

    Article  MathSciNet  Google Scholar 

  16. Biktasheva, I.V., Holden, A.V., Biktashev, V.N.: Localization of response functions of spiral waves in the Fitzhugh–Nagumo system. Int. J. Bifurc. Chaos 16, 1547–1555 (2006)

    Article  MathSciNet  Google Scholar 

  17. Hagan, P.S.: Target patterns in reaction–diffusion equations. Adv. Appl. Math. 2, 400–416 (1981)

    Article  Google Scholar 

  18. Hagan, P.S.: Spiral waves in reaction–diffusion equations. SIAM J. Appl. Math. 4, 762–786 (1982)

    Article  MathSciNet  Google Scholar 

  19. Banerjee, M., Ghorai, S., Mukherjee, N.: Approximated spiral and target patterns in Bazykin’s prey–predator model: multiscale perturbation analysis. Int. J. Bifurc. Chaos 27(03), 1750038 (2017)

    Article  MathSciNet  Google Scholar 

  20. Bhattacharyay, A.: Spirals and targets in reaction diffusion systems. Phys. Rev. E 64, 016113(1)-016113(4) (2001)

    Article  Google Scholar 

  21. Gambino, G., Lombardo, M.C., Sammartino, M., Sciacca, V.: Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. E 88, 042925(1)-042925(12) (2013)

    Article  Google Scholar 

  22. Ghosh, P., Ray, D.S.: Amplitude equations for breathing spiral waves in a forced reaction–diffusion system. J. Chem. Phys. 135, 104112(1)-104112(7) (2011)

    Google Scholar 

  23. Ipsen, M., Kramer, L., Sørensen, P.G.: Amplitude equations for description of chemical reaction–diffusion systems. Phys. Rep. 337, 193–235 (2000)

    Article  Google Scholar 

  24. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighbourhood of Turing–Hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007)

    Article  Google Scholar 

  25. Banerjee, M., Abbas, S.: Existence and non-existence of spatial patterns in a ratio-dependent predator–prey model. Ecol. Complex 21, 199–214 (2015)

    Article  Google Scholar 

  26. Petrovskii, S.V., Malchow, H.: A minimal model of pattern formation in a prey–predator system. Math. Comput. Model. 29, 49–63 (1999)

    Article  MathSciNet  Google Scholar 

  27. Volpert, V.: Elliptic Partial Differential Equations. Birkhäuser, Basel (2011)

    Book  Google Scholar 

  28. Wang, W., Liu, Q., Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator–prey system. Phys. Rev. E 75, 051913(1)-051913(9) (2007)

    MathSciNet  Google Scholar 

  29. Gurney, W.S.C., Veitch, A.R., Cruickshank, I., McGeachin, G.: Circles and spirals: population persistence in a spatially explicit predator–prey model. Ecology 79, 2516–2530 (1998)

    Google Scholar 

  30. Malchow, H., Radtke, B., Kallache, M., Medvinsky, A.B., Tikhonov, D.A., Petrovskii, S.V.: Spatio-temporal pattern formation in coupled models of plankton dynamics and fish school motion. Nonlinear Anal. 1, 53–67 (2000)

    Article  MathSciNet  Google Scholar 

  31. Medvinsky, A.B., Petrovskii, S.V., Tikhonova, I.A., Malchow, H., Li, B.L.: Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44, 311–370 (2002)

    Article  MathSciNet  Google Scholar 

  32. Sheratt, J.A., Lambin, X., Sheratt, T.N.: The effects of the size and shape of landscape features on the formation of traveling Wwaves in cyclic populations. Am. Nat. 162, 503–513 (2003)

    Article  Google Scholar 

  33. Smith, M.J., Sheratt, J.A., Armstrong, N.J.: The effects of obstacle size on periodic travelling waves in oscillatory reaction–diffusion equations. Proc. R. Soc. A 464, 365–390 (2008)

    Article  MathSciNet  Google Scholar 

  34. Allee, W.C.: Animal Aggregations. A Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  35. Goodale, E., Beauchamp, G., Ruxton, G.D.: Mixed-Species Groups of Animals: Behavior, Community Structure, and Conservation. Academic Press (2017). https://doi.org/10.1016/B978-0-12-805355-3.00001-4

    Book  Google Scholar 

  36. Creel, S., Macdonald, D.: Sociality, group size, and reproductive, suppression among carnivores. Adv. Stud. Behav. 24, 203–257, ISSN: 0065-3454 (1995). https://doi.org/10.1016/S0065-3454(08)60395-2

  37. Boesch, C., Boesch, H., Vigilant, L.: Cooperative hunting in chimpanzees: kinship or mutualism? In: Cooperation in Primates and Humans: Mechanisms and Evolution, pp. 139–150. Springer, Berlin (2006). https://doi.org/10.1007/3-540-28277-78

  38. Packer, C., Ruttan, L.: The evolution of cooperative hunting. Am. Natl. 132, 159–198, ISSN: 00030147, 15375323 (1998)

  39. Alves, M.T., Hilker, F.M.: Hunting cooperation and Allee effects in predators. J. Theor. Biol. 419, 13–22, ISSN 0022-5193 (2017). https://doi.org/10.1016/j.jtbi.2017.02.002

  40. Berec, L.: Impacts of foraging facilitation among predators on predator–prey dynamics. Bull. Math. Biol. 72(1), 94–121 (2010)

    Article  MathSciNet  Google Scholar 

  41. Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press (2008)

    Book  Google Scholar 

  42. Vishwakarma, K., Sen, M.: Influence of Allee effect in prey and hunting cooperation in predator with Holling type-III functional response. J. Appl. Math. Comput. 16, 1–21 (2021)

    Google Scholar 

Download references

Acknowledgements

The first author, Reeta Yadav, acknowledges the financially supported research fellowship from CSIR, Govt. of India (file no. 09/1278(0001)/2019-EMR-I). The author Nayana Mukherjee (SERB Qualified Unique Identification Document (SQUID): SQUID-1990-NM-9944) is supported by SERB funded National postdoc fellowship under file number PDF/2020/001876.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest among them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Mukherjee, N. & Sen, M. Spatiotemporal dynamics of a prey–predator model with Allee effect in prey and hunting cooperation in a Holling type III functional response. Nonlinear Dyn 107, 1397–1410 (2022). https://doi.org/10.1007/s11071-021-07066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-07066-y

Keywords

Navigation