Skip to main content
Log in

Stochastic stability of variable-mass Duffing oscillator with mass disturbance modeled as Gaussian white noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The stochastic asymptotic stability with probability one of the stochastic variable- mass Duffing oscillator under weakly parametric excitation is investigated by using the largest Lyapunov exponent, in which the small disturbance of mass is modeled as Gaussian white noise. First, the original system is replaced by an approximate system without mass disturbance based on an equivalent transformation. Then the averaged Itô equation of the approximate system is derived by applying the stochastic averaging method based on the generalized harmonic function. Finally, the Lyapunov exponent of the linearized averaged Itô equation is derived and a necessary and sufficient condition for the stability of the trivial solution is obtained approximately by letting this Lyapunov exponent be negative. The effects of mass disturbance on system stability are explored adequately. It turns out that mass disturbance deteriorates system stability remarkably. It is remarkable that the influences of linear stiffness on the stability of a variable-mass system are significantly different from that of an associated invariable-mass system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeng, C., Han, Q., Yang, T., Wang, H., Jia, Z.: Noise- and delay-induced regime shifts in an ecological system of vegetation. J. Stat. Mech. 2013, P10017 (2013)

    Article  MathSciNet  Google Scholar 

  2. Zeng, J., Zeng, C., Xie, Q., Guan, L., Dong, X., Yang, F.: Different delays-induced regime shifts in a stochastic insect outbreak dynamics. Phys. A 462, 1273–1285 (2016)

    Article  MathSciNet  Google Scholar 

  3. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. Proc. Nat. Acad. 98, 8614–8619 (2001)

    Article  Google Scholar 

  4. Gitterman, M.: New type of Brownian motion. J. Stat. Phys. 146, 239–243 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gitterman, M.: Stochastic oscillator with random mass: new type of Brownian motion. Phys. A 395, 11–21 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ausloos, M., Lambiotte, R.: Brownian particle having a fluctuating mass. Phys. Rev. E 73(1), 011105 (2006)

    Article  Google Scholar 

  7. Zhang, W., Meng, G.: Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation. IEEE Sens. J. 7(3), 370–380 (2007)

    Article  Google Scholar 

  8. Tamayo, J., Kosaka, P., Ruz, J., Paulo, A., Calleja, M.: Biosensors based on nanomechanical systems. Chem. Soc. Rev. 42, 1287–1311 (2013)

    Article  Google Scholar 

  9. Justino, C., Rocha-Santos, T., Duarte, A.: Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends. Anal. Chem. 29, 1172–1183 (2010)

    Article  Google Scholar 

  10. Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., Yamada, H.: Development of low noise cantilever deflection sensor for multi-environment frequency-modulation atomic force microscopy. Rev. Sci. Instrum. 76, 053704 (2005)

    Article  Google Scholar 

  11. Balachandren, B.: A review of nonlinear dynamics of mechanical systems in year 2008. J. Syst. Des. Dyn. 2(3), 611–640 (2008)

    Google Scholar 

  12. Bashir, R.: BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56, 1565–1586 (2004)

    Article  Google Scholar 

  13. Lavrik, N., Sepaniak, M., Datskos, P.: Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(7), 2229–2253 (2004)

    Article  Google Scholar 

  14. Gitterman, M.: Oscillator with random trichotomous mass. Phys. A 391, 5343–5348 (2012)

    Article  MathSciNet  Google Scholar 

  15. Wang, Y., Jin, X., Huang, Z.: Stochastic averaging for quasi-integrable Hamiltonian systems with variable mass. ASME J. Appl. Mech. 81, 051003 (2014)

    Article  Google Scholar 

  16. Zhong, S., Wei, K., Gao, S., Ma, H.: Trichotomous noise induced resonance behavior for a fractional oscillator with random mass. J. Stat. Phys. 159, 195–209 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, F., Zhu, C., Cheng, X., Li, H.: Stochastic resonance in a fractional harmonic oscillator subject to random mass and signal-modulated noise. Phys. A 459, 86–91 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kozin, F.: A survey of stability of stochastic systems. Automatica 5, 95–112 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ling, Q., Jin, X., Li, H., Huang, Z.: Lyapunov function construction for nonlinear stochastic dynamical systems. Nonlinear Dyn. 72(4), 853–864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, Z., Jin, X., Zhu, W.: Lyapunov functions for quasi-Hamiltonian systems. Probab. Eng. Mech. 24(3), 374–381 (2009)

    Article  Google Scholar 

  21. Oseledec, V.: A multiplicative ergodic theorem: Lyapunov characteristic number for dynamical systems. Trans. Mosc. Math. Soc. 19(2), 197–231 (1968)

    MathSciNet  Google Scholar 

  22. Khasminskii, R.: Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theory Probab. Appl. 12, 144–147 (1967)

    Article  MathSciNet  Google Scholar 

  23. Kozin, F., Zhang, Z.: On almost sure sample stability of nonlinear Itô differential equations. Probab. Eng. Mech. 6, 92–95 (1991)

    Article  Google Scholar 

  24. Zhu, W.: Lyapunov exponent and stochastic stability of quasi-nonintegrable Hamiltonian systems. Int. J. Non-Linear Mech. 39, 569–579 (2004)

    Article  MATH  Google Scholar 

  25. Chen, L., Zhu, W.: Stochastic stability of Duffing oscillator with fractional derivative damping under combined harmonic and white noise parametric excitations. Acta Mech. 206(3–4), 133–148 (2009)

    Article  MATH  Google Scholar 

  26. Zhu, W., Lin, Y.: Stochastic averaging of energy envelope. ASCE J. Eng. Mech. 117, 1890–1905 (1991)

    Article  Google Scholar 

  27. Zhu, W., Huang, Z., Suzuki, Y.: Response and stability of strongly non-linear oscillators under wide-band random excitation. Int. J. Nonlinear Mech. 36, 1235–1250 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jia, W., Zhu, W., Xu, Y.: Stochastic averaging of quasi-non-integrable Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Int. J. Non-Linear Mech. 51, 45–53 (2013)

    Article  Google Scholar 

  29. Feng, C., Chen, S.: Stochastic stability of Duffing–Mathieu system with delayed feedback control under white noise excitation. Commun. Nonlinear Sci. Numer. Simulat. 17, 3763–3771 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, W., Huang, Z.: Lyapunov exponents and stochastic stability of quasi-integrable Hamiltonian systems. J. Appl. Mech. 66, 211–217 (1992)

    Article  MathSciNet  Google Scholar 

  31. Zhu, W., Huang, Z., Suzuki, Y.: Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems. Int. J. Non-Linear Mech. 37, 419–437 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, W., Zhu, W., Xu, W.: Stochastic stability of quasi non-integrable Hamiltonian systems under parametric excitations of Gaussian and Poisson white noises. Probab. Eng. Mech. 32, 39–47 (2013)

    Article  Google Scholar 

  33. Liu, W., Zhu, W., Jia, W.: Stochastic stability of quasiintegrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises. Int. J. Non-Linear Mech. 58, 191–198 (2014)

    Article  Google Scholar 

  34. Zeng, C., Zeng, J., Liu, F., Wang, H.: Impact of correlated noise in an energy depot model. Sci. Rep. 6, 19591 (2016)

    Article  Google Scholar 

  35. Zeng, C., Zhang, C., Zeng, J., Luo, H., Tian, D., Zhang, H., Long, F., Xu, Y.: Noises-induced regime shifts and-enhanced stability under a model of lake approaching eutrophication. Ecol. Complex. 22, 102–108 (2015)

    Article  Google Scholar 

  36. Khasminskii, R.: On the averaging principle for Itô stochastic differential equations. Kibernetika 4, 260–279 (1968)

    Google Scholar 

  37. Blum, J., Wurm, G., Kempf, S., et al.: Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Phys. Rev. Lett. 85(12), 2426 (2000)

    Article  Google Scholar 

  38. Rubì, M., Gadomski, A.: Nonequilibrium thermodynamics versus model grain growth: derivation and some physical implications. Phys. A 326, 333–343 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gadomski, A., Siódmiak, J.: A kinetic model of protein crystal growth in mass convection regime. Cryst. Res. Technol. 37(2–3), 281–291 (2002)

    Article  Google Scholar 

  40. Łuczka, J., Hänggi, P., Gadomski, A.: Diffusion of clusters with randomly growing masses. Phys. Rev. E 51(6), 5762–5769 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11472212, 11532011, 11502199 and 11502160) and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Grant No. Z2016161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Xu, W., Jia, W. et al. Stochastic stability of variable-mass Duffing oscillator with mass disturbance modeled as Gaussian white noise. Nonlinear Dyn 89, 607–616 (2017). https://doi.org/10.1007/s11071-017-3474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3474-5

Keywords

Navigation