Skip to main content
Log in

Practical robust nonlinear PD controller for cable-driven parallel manipulators

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a model-free robust nonlinear PD (R-NPD) controller for cable-driven parallel manipulators (CDPMs) in joint space. Generally, in various mechanical manipulators and in particular CDPMs for fast and high-precision tracking, a precise dynamic model is required. However, the dynamic model of the robot is always contaminated with uncertainties such as nonlinear and time-varying parameters as well as external disturbances. For this purpose, in the proposed controller structure, the time-delay estimation (TDE) technique is used to indirectly use the robot dynamics into the control structure without need of its prior knowledge. Furthermore, a nonlinear PD controller is designed in joint space in such a way that the robot can track the reference trajectory quite fast and accurate, without the need for any auxiliary sensors. The stability of the closed-loop system has been examined through Lyapunov direct method, and it has been shown that tracking error remains uniformly ultimately bounded. Finally, to demonstrate the effectiveness of the proposed controller, simulations and experiments have been performed on two different categories of CDPMs, whose results show that the proposed control scheme outperforms modified TDE control method in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

\({\varvec{a}}_i\) :

The position of the proximal points \(A_i\)

\(\varvec{b}_i\) :

The position of the distal points \(B_i\)

\(\varvec{l}\) :

The cables length vector

\(\varvec{l}_0\) :

The vector of the initial length of cables

\(\varvec{J}\) :

The Jacobian matrix

\(\varvec{x}\) :

The pose of the moving platform

\(\varvec{M}\) :

The inertial matrix of CDPM

\(m_{MP}\) :

The mass of the moving platform

\(m_{l_i}\) :

The mass of the cables

\(\varvec{C}\) :

The Coriolis and centrifugal terms

\(\varvec{G}\) :

The vector of gravity terms

\(\varvec{F}_v\) :

The vector of viscous friction terms

\(\varvec{F}_c\) :

The vector of Coulomb friction terms

\(\varvec{F}_{dis}\) :

The vector of disturbance terms

\(\mathbf {\pmb {\tau }}\) :

The vector of cables tension

\(\mathbf {\pmb {\theta }}\) :

The vector of motors shaft position

\(\mathbf {\pmb {\theta }}_d\) :

The reference trajectories vector

\(\varvec{I}_a\) :

The actuator moments of inertia matrix

\(\varvec{D}_a\) :

The damping or viscous friction matrices

\(\varvec{u}\) :

The vector of actuator torques

\({\bar{\varvec{M}}}\) :

The constant matrix of TDE technique

\(\varvec{h}\) :

The vector of CDPM’s dynamics

\({\hat{\varvec{h}}}\) :

The estimation vector of \(\varvec{h}\)

\(\varvec{K}_p\) :

The time-varying gain matrix of NPD term

\(\varvec{K}_v\) :

The time-varying gain matrix of NPD term

\(\varvec{K}_e\) :

The constant matrix for robust term

\(\alpha _p\) :

The nonlinearity term of the controller

\(\alpha _v\) :

The nonlinearity term of the controller

\(\delta _p\) :

The boundary layer for error terms

\(\delta _v\) :

The boundary layer for derivative error terms

\(\varvec{Q}\) :

The null space vector/matrix of the Jacobian matrix

\(\mathbf {\pmb {\mu }}\) :

The gain parameter of the force distribution

\(\mathbf {\pmb {\epsilon }}\) :

The estimation error of the TDE technique

\(\mathbf {\pmb {\varpi }}\) :

The threshold of the derivative error

References

  1. Adhikary, N., Mahanta, C.: Sliding mode control of position commanded robot manipulators. Control Eng. Practice 81, 183–198 (2018)

    Article  Google Scholar 

  2. Aflakian, A., Safaryazdi, A., Masouleh, M.T., Kalhor, A.: Experimental study on the kinematic control of a cable suspended parallel robot for object tracking purpose. Mechatronics 50, 160–176 (2018)

    Article  Google Scholar 

  3. Babaghasabha, R., Khosravi, M.A., Taghirad, H.D.: Adaptive robust control of fully-constrained cable driven parallel robots. Mechatronics 25, 27–36 (2015)

    Article  Google Scholar 

  4. Babaghasabha, R., Khosravi, M.A., Taghirad, H.D.: Adaptive robust control of fully constrained cable robots: singular perturbation approach. Nonlinear Dyn. 85(1), 607–620 (2016)

    Article  MathSciNet  Google Scholar 

  5. Behzadipour, S., Khajepour, A.: Stiffness of cable-based parallel manipulators with application to stability analysis. J. Mech. Design 128(1), 303–310 (2006)

    Article  Google Scholar 

  6. Cone, L.L.: Skycam-an aerial robotic camera system. Byte 10(10), 122 (1985)

    Google Scholar 

  7. Dallej, T., Gouttefarde, M., Andreff, N., Hervé, P.E., Martinet, P.: Modeling and vision-based control of large-dimension cable-driven parallel robots using a multiple-camera setup. Mechatronics 61, 20–36 (2019)

    Article  Google Scholar 

  8. Fang, S., Franitza, D., Torlo, M., Bekes, F., Hiller, M.: Motion control of a tendon-based parallel manipulator using optimal tension distribution. IEEE/ASME Trans. Mechatronic. 9(3), 561–568 (2004)

    Article  Google Scholar 

  9. Gosselin, C.: Cable-driven parallel mechanisms: state of the art and perspectives. Mech. Eng. Rev. 1(1), DSM0004–DSM0004 (2014)

  10. Gouttefarde, M., Daney, D., Merlet, J.P.: Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots. IEEE Trans. Robot. 27(1), 1–13 (2010)

    Article  Google Scholar 

  11. Gouttefarde, M., Merlet, J.P., Daney, D.: Determination of the wrench-closure workspace of 6-dof parallel cable-driven mechanisms. In: Advances in Robot Kinematics, pp. 315–322. Springer (2006)

  12. Hosseini, M.I., Harandi, M.J., Khalilpour, S.A., Taghirad, H.D.: Adaptive fast terminal sliding mode control of a suspended cable-driven robot. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), pp. 985–990. IEEE (2019)

  13. Hosseini, M.I., Harandi, M.J., Khalilpour, S.A., Taghirad, H.D.: Experimental performance of adaptive fast terminal sliding mode control on a suspended cable robot. J. Electr. Comput. Eng. Innov. (JECEI) 7(1), 59–67 (2019)

    Google Scholar 

  14. Hsia, T.S.: A new technique for robust control of servo systems. IEEE Trans. Ind. Electron. 36(1), 1–7 (1989)

    Article  Google Scholar 

  15. Hsia, T.S., Lasky, T., Guo, Z.: Robust independent joint controller design for industrial robot manipulators. IEEE Trans. Ind. Electron. 38(1), 21–25 (1991)

    Article  Google Scholar 

  16. Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 56(9), 3593–3601 (2009)

    Article  Google Scholar 

  17. Kawamura, S., Kino, H., Won, C.: High-speed manipulation by using parallel wire-driven robots. Robotica 18(1), 13–21 (2000)

    Article  Google Scholar 

  18. Khalilpour, S., Bourbour, A., Khorrambakht, R., Kariminasab, S., Taghirad, H.: Forward kinematics resolution of a deployable cable robot. In: 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), pp. 27–32. IEEE (2017)

  19. Khalilpour, S., Khorrambakht, R., Damirchi, H., Taghirad, H., Cardou, P.: Tip-trajectory tracking control of a deployable cable-driven robot via output redefinition. Multibody Syst. Dyn. pp. 1–28 (2020)

  20. Khalilpour, S.A., Khorrambakht, R., Taghirad, H.D., Cardou, P.: Robust cascade control of a deployable cable-driven robot. Mech. Syst. Signal Process. 127, 513–530 (2019)

    Article  Google Scholar 

  21. Khosravi, M.A., Taghirad, H.D.: Experimental performance of robust pid controller on a planar cable robot. In: Cable-Driven Parallel Robots, pp. 337–352. Springer (2013)

  22. Korayem, M.H., Yousefzadeh, M., Beyranvand, B.: Dynamics and control of a 6-dof cable-driven parallel robot with visco-elastic cables in presence of measurement noise. J. Intell. Robot. Syst. 88(1), 73–95 (2017)

    Article  Google Scholar 

  23. Lamaury, J., Gouttefarde, M., Michelin, M., Tempier, O.: Design and control of a redundant suspended cable-driven parallel robots. In: Latest Advances in Robot Kinematics, pp. 237–244. Springer (2012)

  24. Lee, J., Chang, P.H., Jin, M.: Adaptive integral sliding mode control with time-delay estimation for robot manipulators. IEEE Trans. Ind. Electron. 64(8), 6796–6804 (2017)

    Article  Google Scholar 

  25. Mao, Y., Agrawal, S.K.: Design of a cable-driven arm exoskeleton (carex) for neural rehabilitation. IEEE Trans. Robot. 28(4), 922–931 (2012)

    Article  Google Scholar 

  26. Merlet, J.P.: Marionet, a family of modular wire-driven parallel robots. In: Advances in Robot Kinematics: Motion in Man and Machine, pp. 53–61. Springer (2010)

  27. Merlet, J.P.: Simulation of discrete-time controlled cable-driven parallel robots on a trajectory. IEEE Trans. Robot. 33(3), 675–688 (2017)

    Article  Google Scholar 

  28. Miermeister, P., Pott, A., Verl, A.: Auto-calibration method for overconstrained cable-driven parallel robots. In: ROBOTIK 2012; 7th German Conference on Robotics, pp. 1–6. VDE (2012)

  29. Mousavi, M.R., Ghanbari, M., Moosavian, S.A.A., Zarafshan, P.: Explicit dynamics of redundant parallel cable robots. Nonlinear Dyn. 94(3), 2077–2096 (2018)

    Article  Google Scholar 

  30. Ouyang, P., Pano, V., Tang, J., Yue, W.: Position domain nonlinear pd control for contour tracking of robotic manipulator. Robot. Comput.-Integr. Manuf. 51, 14–24 (2018)

    Article  Google Scholar 

  31. Pott, A.: Cable-Driven Parallel Robots: Theory and Application, vol. 120. Springer (2018)

  32. Qi, R., Khajepour, A., Melek, W.W.: Modeling, tracking, vibration and balance control of an underactuated mobile manipulator (umm). Control Eng. Practice 93, 104159 (2019)

    Article  Google Scholar 

  33. Qian, S., Zi, B., Ding, H.: Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn. 83(1–2), 89–108 (2016)

    Article  MathSciNet  Google Scholar 

  34. Shang, W., Cong, S.: Nonlinear computed torque control for a high-speed planar parallel manipulator. Mechatronics 19(6), 987–992 (2009)

    Article  Google Scholar 

  35. Shang, W., Xie, F., Zhang, B., Cong, S., Li, Z.: Adaptive cross-coupled control of cable-driven parallel robots with model uncertainties. IEEE Robot. Autom. Lett. 5(3), 4110–4117 (2020)

    Article  Google Scholar 

  36. Shang, W., Zhang, B., Zhang, B., Zhang, F., Cong, S.: Synchronization control in the cable space for cable-driven parallel robots. IEEE Trans. Ind. Electron. 66(6), 4544–4554 (2018)

    Article  Google Scholar 

  37. Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. Prentice hall Englewood Cliffs, NJ (1991)

  38. Su, W.C., Drakunov, S.V., Ozguner, U.: An \(\rm O(T^2)\) boundary layer in sliding mode for sampled-data systems. IEEE Trans. Autom. Control 45(3), 482–485 (2000)

    Google Scholar 

  39. Taghirad, H.D.: Parallel Robots: Mechanics and Control. CRC Press (2013)

  40. Wang, Y., Yan, F., Chen, J., Ju, F., Chen, B.: A new adaptive time-delay control scheme for cable-driven manipulators. IEEE Trans. Ind. Inform. 15(6), 3469–3481 (2018)

    Article  Google Scholar 

  41. Zanotto, D., Rosati, G., Minto, S., Rossi, A.: Sophia-3: a semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Trans. Robot. 30(4), 974–979 (2014)

    Article  Google Scholar 

  42. Zi, B., Zhu, Z.C., Du, J.L.: Analysis and control of the cable-supporting system including actuator dynamics. Control Eng. Practice 19(5), 491–501 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from Iranian National Science Foundation (INSF) under grant number 99028112. The authors greatly appreciate Mr. Nasrollah Khodadadi and Mr. Rooh- olla Khorrambakht for their contribution to the experimental setup and for their time in discussing this work.

Funding

This study was funded by Iranian National Science Foundation (INSF) (grant number 99028112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid D. Taghirad.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 30582 KB)

Appendices

Appendix A

To illustrate the boundedness of the TDE error introduced in (21), let us rewrite the dynamics as follows

$$\begin{aligned} \mathbf {\pmb {\varepsilon }} = \varvec{u}_r - \ddot{\varvec{x}}. \end{aligned}$$
(55)

Multiply both sides of by \(\varvec{M}_T(\varvec{x})\) and substitute it in (11) and (13)

$$\begin{aligned}&\varvec{M}_T(\varvec{x}) \mathbf {\pmb {\varepsilon }} = \varvec{M}_T(\varvec{x}) (\varvec{u}_r - \ddot{\varvec{x}}) \nonumber \\&= \varvec{M}_T(\varvec{x}) \varvec{u}_r + \varvec{C}_T(\varvec{x}, {\dot{\varvec{x}}}){\dot{\varvec{x}}} + \varvec{g}_T(\varvec{x}) + \varvec{N}_T(\varvec{x}, {\dot{\varvec{x}}}) \nonumber \\&\quad - \varvec{u}_T \nonumber \\&= \varvec{M}_T(\varvec{x}) \varvec{u}_r + \varvec{C}_T(\varvec{x}, {\dot{\varvec{x}}}){\dot{\varvec{x}}} + \varvec{g}_T(\varvec{x}) + \varvec{N}_T(\varvec{x}, {\dot{\varvec{x}}}) \nonumber \\&\quad - {\bar{\varvec{M}}} \varvec{u}_r - {\hat{\varvec{h}}}(\varvec{x}, {\dot{\varvec{x}}}, \ddot{\varvec{x}}). \end{aligned}$$
(56)

Referring to (15), it is clear that

$$\begin{aligned} \begin{aligned}&{\hat{\varvec{h}}}(\varvec{x}, {\dot{\varvec{x}}}, \ddot{\varvec{x}}) = \bigg ((\varvec{M}_T(\varvec{x}) - {\bar{\varvec{M}}}) \ddot{\varvec{x}} \bigg ) \bigg |_{t - \varDelta t} + \\&\bigg (\varvec{C}_T(\varvec{x}, {\dot{\varvec{x}}}){\dot{\varvec{x}}} \bigg ) \bigg |_{t - \varDelta t} + \varvec{g}_T(\varvec{x}) \bigg |_{t - \varDelta t} + \varvec{N}_T(\varvec{x}, {\dot{\varvec{x}}}) \bigg |_{t - \varDelta t}.\nonumber \end{aligned}\!\!\!\!\!\\ \end{aligned}$$
(57)

Rewrite (56) according to (57)

$$\begin{aligned} \varvec{M}_T(\varvec{x}) \mathbf {\pmb {\varepsilon }}&= (\varvec{M}_T(\varvec{x}) - {\bar{\varvec{M}}}) \varvec{u}_r&\\ \nonumber&\quad - \bigg ((\varvec{M}_T(\varvec{x}) - {\bar{\varvec{M}}}) \ddot{\varvec{x}} \bigg ) \bigg |_{t - \varDelta t} + \mathbf {\pmb {\varOmega }}, \end{aligned}$$
(58)

in which

$$\begin{aligned} \mathbf {\pmb {\varOmega }}&= \varvec{C}_T(\varvec{x}, {\dot{\varvec{x}}}){\dot{\varvec{x}}} - \bigg (\varvec{C}_T(\varvec{x}, {\dot{\varvec{x}}}){\dot{\varvec{x}}} \bigg )\bigg |_{t - \varDelta t} + \varvec{g}_T(\varvec{x}) \nonumber&\\ \nonumber&\quad - \varvec{g}_T(\varvec{x}) \bigg |_{t - \varDelta t} + \varvec{N}_T(\varvec{x}, {\dot{\varvec{x}}}) - \varvec{N}_T(\varvec{x}, {\dot{\varvec{x}}}) \bigg |_{t - \varDelta t}.\nonumber \\ \end{aligned}$$
(59)

Given \(\varvec{N}_T(\varvec{x}, {\dot{\varvec{x}}})\) defined in (6), \(\mathbf {\pmb {\varOmega }}\) may be divided into two (continuous and discontinuous) parts as follows

$$\begin{aligned} \mathbf {\pmb {\varOmega }}_{con}&= \varvec{C}_T(\varvec{x}, {\dot{\varvec{x}}}){\dot{\varvec{x}}} - \bigg (\varvec{C}_T(\varvec{x}, {\dot{\varvec{x}}}){\dot{\varvec{x}}} \bigg )\bigg |_{t - \varDelta t} \nonumber&\\ \nonumber&\quad + \varvec{g}_T(\varvec{x}) - \varvec{g}_T(\varvec{x}) \bigg |_{t - \varDelta t} + \varvec{F}_v {\dot{\varvec{x}}} - \varvec{F}_v {\dot{\varvec{x}}} \bigg |_{t - \varDelta t}&\\ \nonumber&\quad + \mathbf {\pmb {\tau }}_{dis} - \mathbf {\pmb {\tau }}_{dis} \bigg |_{t - \varDelta t},&\\ \mathbf {\pmb {\varOmega }}_{dis}&= \varvec{F}_c({\dot{\varvec{x}}}) - \varvec{F}_c({\dot{\varvec{x}}}) \bigg |_{t - \varDelta t}, \end{aligned}$$
(60)

\(\mathbf {\pmb {\varOmega }}_{dis}\) is discontinuous and has an upper bound \(\rho \) at velocity reversal. In addition, if boundedness and continuous condition of real value of \(\mathbf {\pmb {\varOmega }}_{con}\) is verified, then \(\mathbf {\pmb {\varOmega }}_{con} = O(\varDelta t^2)\) [38]. Therefore, \(\mathbf {\pmb {\varOmega }}\) is bounded by \(\rho + O(\varDelta t^2)\) while \(\varDelta t\) is sufficiently small.

Add and subtract \(\varvec{M}_T(\varvec{x})\) to (58) to reach:

$$\begin{aligned} \varvec{M}_T(\varvec{x}) \mathbf {\pmb {\varepsilon }}&= (\varvec{M}_T(\varvec{x}) - {\bar{\varvec{M}}}) \varvec{u}_r - (\varvec{M}_T(\varvec{x}) - {\bar{\varvec{M}}}) \ddot{\varvec{x}} \bigg |_{t - \varDelta t}\nonumber&\\ \nonumber&\quad + (\varvec{M}_T(\varvec{x}) - \varvec{M}_T(\varvec{x}) \bigg |_{t - \varDelta t}) \ddot{\varvec{x}} \bigg |_{t - \varDelta t} + \mathbf {\pmb {\varOmega }}.\nonumber \\ \end{aligned}$$
(61)

Use delayed (55) to write:

$$\begin{aligned} \varvec{M}_T(\varvec{x}) \mathbf {\pmb {\varepsilon }}&= \big (\varvec{M}_T(\varvec{x}) - {\bar{\varvec{M}}}\big ) \mathbf {\pmb {\varepsilon }} \bigg |_{t - \varDelta t}&\nonumber \\ \nonumber&\quad - \big (\varvec{M}_T(\varvec{x}) - {\bar{\varvec{M}}}\big ) \big (\varvec{u}_r - \varvec{u}_r \bigg |_{t - \varDelta t}\big )&\\ \nonumber&\quad + \big (\varvec{M}_T(\varvec{x}) - \varvec{M}_T(\varvec{x}) \bigg |_{t - \varDelta t}\big ) \ddot{\varvec{x}} \bigg |_{t - \varDelta t} + \mathbf {\pmb {\varOmega }}.\nonumber \\ \end{aligned}$$
(62)

The above equation shows a discrete-time system in the state-space form with state variable vector \(\mathbf {\pmb {\varepsilon }}\) as follows

$$\begin{aligned} \mathbf {\pmb {\varepsilon }}(k) = \varvec{A}(k) \mathbf {\pmb {\varepsilon }}(k-1) + \varvec{B}(k) \varvec{u}_k(k) + \mathbf {\pmb {\nu }}(k), \end{aligned}$$
(63)

in which

$$\begin{aligned}&\varvec{A}(k) = \varvec{B}(k) =\varvec{I}- \varvec{M}_T^{-1}(\varvec{x}) {\bar{\varvec{M}}},&\\ \nonumber&\varvec{u}_k(k) = \varvec{u}_r - \varvec{u}_r\bigg |_{k-1},&\\ \nonumber&\mathbf {\pmb {\nu }}(k) = \varvec{M}_T^{-1}(\varvec{x})\bigg (\big (\varvec{M}_T(\varvec{x}) - \varvec{M}_T(\varvec{x}) \bigg |_{k-1} \big ) \ddot{\varvec{x}} \bigg |_{k-1} + \mathbf {\pmb {\varOmega }}\bigg ), \end{aligned}$$
(64)

where \(\varvec{u}_k(k)\) and \(\mathbf {\pmb {\nu }}(k)\) are bounded, if the chosen sampling time \(\varDelta t\) is sufficiently small. Moreover, the above-mentioned system is asymptotically stable if and only if \(\Vert \varvec{A}(k)\Vert < 1\), meaning that \({\bar{\varvec{M}}}\) must satisfy the following condition

$$\begin{aligned} \Vert \varvec{I}- \varvec{M}_T^{-1}(\varvec{x}) {\bar{\varvec{M}}}\Vert < 1. \end{aligned}$$
(65)

Appendix B

In this appendix, we examine that the Lyapunov function candidate selected in Sect. 2 is positive definite, for all \(t>0\). To this end, let us restate Lemma 1 of [34] as follows

Lemma 1

Consider the continuous diagonal matrix

$$\begin{aligned} \varvec{K}_p(\varvec{e}) = diag(k_{p1}(e_1), \dots , k_{pn}(e_n)), \end{aligned}$$

Assume that there exist class K functions \(\alpha _i(\cdot )\) such that

$$\begin{aligned} \xi k_{pi}(\xi ) \ge \alpha _i(|\xi |), \quad \forall \xi \in {\mathcal {R}}, \quad and \quad i = 1, \dots , n \end{aligned}$$

then

$$\begin{aligned} \int _{0}^{\varvec{e}} \mathbf {\pmb {\chi }}^T \varvec{K}_p(\mathbf {\pmb {\chi }}) d\mathbf {\pmb {\chi }} > 0, \quad \forall \varvec{e}\ne \mathbf {\pmb {0}}, \end{aligned}$$

and

$$\begin{aligned} \int _{0}^{\varvec{e}} \mathbf {\pmb {\chi }}^T \varvec{K}_p(\mathbf {\pmb {\chi }}) d\mathbf {\pmb {\chi }} \rightarrow \infty \quad as \Vert \varvec{e}\Vert \rightarrow \infty . \end{aligned}$$

\(\square \)

Since \(k_{pi}(e_i)\) is defined in this paper as follows

$$\begin{aligned} k_{pi}(e_i) = {\left\{ \begin{array}{ll} k_{pi}|e_i|^{\alpha _p - 1}, &{} |e_i| > \delta _p \\ k_{pi} \delta _p^{\alpha _p - 1}, &{} |e_i| \le \delta _p \end{array}\right. } \end{aligned}$$
(66)

define class K functions \(\alpha _i(\cdot )\) as

$$\begin{aligned} \alpha _i(|e_i|) = {\left\{ \begin{array}{ll} \beta _i |e_i|^{\alpha _p}, &{} |e_i| > \delta _p \\ \beta _i |e_i| \delta _p^{\alpha _p - 1}, &{} |e_i| \le \delta _p \end{array}\right. } \end{aligned}$$
(67)

if \(k_{pi}>\beta _i > 0\), then \(k_{pi}(e_i) \ge \alpha _i(|e_i|)\), and therefore, according to the above-stated lemma the function \(\int _{0}^{\varvec{e}} \mathbf {\pmb {\chi }}^T \varvec{K}_p(\mathbf {\pmb {\chi }}) d\mathbf {\pmb {\chi }}\), and the Lyapunov function \(V(\varvec{e}, {\dot{\varvec{e}}})\) is positive definite in \(\varvec{e}\in {\mathcal {R}}^n\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M.I., Khalilpour, S.A. & Taghirad, H.D. Practical robust nonlinear PD controller for cable-driven parallel manipulators. Nonlinear Dyn 106, 405–424 (2021). https://doi.org/10.1007/s11071-021-06758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06758-9

Keywords

Navigation