Skip to main content
Log in

Spatiotemporal distortion effects and interaction properties for certain nonlinear waves of the generalized AB system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is the generalized AB system, which is extended from the well-known AB system that is used to describe the evolution of the wave packets in a marginally stable or unstable baroclinic shear flow. Introducing an auxiliary function \(\alpha (\tau )\), we construct the Nth-order vector solitary waves for the generalized AB system, which are different from the regular vector solitary waves in the existing literature. We find that the vector solitary waves are subject to spatiotemporal distortion (SD) effects in the evolution. Influenced by the SD effects, the vector solitary waves would evolve with the shape changes or the appearances, splits, combinations and disappearances of certain bulges. It is revealed that the SD effects do not change the interaction properties of the vector solitary waves. Excluding from the SD effects, we find that the interacting vector solitary waves not only exhibit the same local and global oscillations as the scalar solitary waves of AB system, but also lead to certain unique inelastic interactions as they possess different velocities. It is also found that two vector solitary waves with the same velocity may degenerate into a parallel-state solitary wave while two scalar solitary waves can not. For the interactions among the multi vector solitary waves, we observe that the symmetric parallel-state solitary waves interacting with standard bell-shaped solitary waves may bring about the destruction of the symmetric structures as well as the generation of the bound-state solitary waves, and that two symmetric parallel-state solitary waves interacting with each other may cause the broken symmetric structures for both ones. Moreover, the vector breathers and rogue waves of the generalized AB system are presented. Taking vector rogue waves in consideration, we demonstrate that the SD effects manifest themselves in two aspects: one is the destruction of the conventional one-peak-two-valley or four-petal symmetric structure; the other is the split of the rogue wave into some small ones with the adjustable number. Besides, modulation instability analysis presents the conditions under which the perturbed plane waves can develop into the distorted rogue waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availibility

All data generated or analysed during this study are included in this article.

References

  1. Wazwaz, A.M., Kaur, L.: Complex simplified Hirota’s forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation. Nonlin. Dyn. 95, 2209 (2019)

    Article  Google Scholar 

  2. Sun, Y., Tian, B., Yuan, Y.Q., Du, Z.: Semi-rational solutions for a (2+1)-dimensional Davey-Stewartson system on the surface water waves of finite depth. Nonlin. Dyn. 94, 3029 (2018)

    Article  Google Scholar 

  3. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirotas method. Nonlin. Dyn. 88, 3017 (2017)

    Article  MathSciNet  Google Scholar 

  4. Pedlosky, J., Leibovich, S.: Geophysical Fluid Dynamics. Springer-Verlag, Berlin (1979)

    Book  Google Scholar 

  5. Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero-Bogoyavlenskii-Schiff equation. Nonlin. Dyn. 89, 1727 (2017)

    Article  MathSciNet  Google Scholar 

  6. Du, Z., Xu, T., Ren, S.: Interactions of the vector breathers for the coupled Hirota system with \(4\times 4\) Lax pair. Nonlin. Dyn. 104, 683 (2021)

    Article  Google Scholar 

  7. Wazwaz, A.M.: A study on a two-wave mode Kadomtsev-Petviashvili equation: conditions for multiple soliton solutions to exist. Math. Method. Appl. Sci. 40, 4128 (2017)

    Article  MathSciNet  Google Scholar 

  8. Pedlosky, J.: Finite-amplitude baroclinic wave packets. J. Atmos. Sci. 29, 680 (1972)

    Article  Google Scholar 

  9. Gibbon, J.D., James, I.N., Moroz, I.M.: An example of soliton behavior in a rotating baroclinic fluid. Proc. R. Soc. Lond. A 367(1729), 219 (1979)

    Article  Google Scholar 

  10. Zhang, H.S., Wang, L., Sun, W.R., Wang, X., Xu, T.: Mechanisms of stationary converted waves and their complexes in the multi-component AB system. Physica D 419, 132849 (2021)

    Article  MathSciNet  Google Scholar 

  11. Tan, B., Boyd, J.P.: Envelope solitary waves and periodic waves in the AB equations. Stud. Appl. Math. 109, 67 (2002)

    Article  MathSciNet  Google Scholar 

  12. Moroz, I.: Slowly modulated baroclinic waves in a three-layer model. J. Atmos. Sci. 38, 600 (1981)

    Article  MathSciNet  Google Scholar 

  13. Moroz, I.M., Brindley, J.: Evolution of baroclinic wave packets in a flow with continuous shear and stratification. Proc. R. Soc. Lond. A 377, 379 (1981)

    Article  MathSciNet  Google Scholar 

  14. Xie, X.Y., Tian, B., Liu, L., Wu, X.Y., Jiang, Y.: Solitons and rogue waves for a nonlinear system in the geophysical fluid. Mod. Phys. Lett. B 30, 1650412 (2016)

    Article  MathSciNet  Google Scholar 

  15. Yu, G.F., Xu, Z.W., Hu, J., Zhao, H.Q.: Bright and dark soliton solutions to the AB system and its multicomponent generalization. Commun. Nonlin. Sci. Numer. Simul. 47, 178 (2017)

    Article  Google Scholar 

  16. Guo, R., Liu, Y.F.: The canonical AB system: conservation laws and soliton solutions. Appl. Math. Comput. 259, 153 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Zhang, G.Q., Yan, Z., Wen, X.Y.: Multi-dark-dark solitons of the integrable repulsive AB system via the determinants. Chaos 27, 083110 (2017)

    Article  MathSciNet  Google Scholar 

  18. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  19. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlin. Dyn. 74(3), 701 (2013)

    Article  MathSciNet  Google Scholar 

  20. Wen, X.Y., Yan, Z.: Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation. Chaos 25, 123115 (2015)

    Article  MathSciNet  Google Scholar 

  21. Wang, X., Li, Y.Q., Huang, F., Cheng, Y.: Rogue wave solutions of AB system. Commun. Nonlin. Sci. Numer. Simul. 20, 434 (2015)

    Article  MathSciNet  Google Scholar 

  22. Xie, X.Y., Liu, Z.Y., Xu, D.Y.: Bright-dark soliton, breather and semirational rogue wave solutions for a coupled AB system. Nonlin. Dyn. 101, 633 (2020)

    Article  Google Scholar 

  23. Zhang, H.S., Wang, L., Wang, X., Xie, X.Y.: Transformed nonlinear waves, state transitions and modulation instability in a three-component AB model for the geophysical flows. Nonlin. Dyn. 102, 349 (2020)

  24. Hirota, R., Nagai, A., Nimmo, J.J.C., Gilson, C.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  25. Ma, W.X., You, Y.: Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans. Math. Soc. 357(5), 1753 (2005)

    Article  MathSciNet  Google Scholar 

  26. Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1 (1983)

    Article  MathSciNet  Google Scholar 

  27. Liu, L., Tian, B., Chai, H.P., Yuan, Y.Q.: Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber. Phys. Rev. E 95, 032202 (2017)

    Article  Google Scholar 

  28. Wang, D.S., Wang, X.: Long-time asymptotics and the bright N-soliton solutions of the Kundu- Eckhaus equation via the Riemann-Hilbert approach. Nonlin. Anal.-Real 41, 334 (2018)

  29. Wang, D.S., Zhang, D., Yang, J.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    Article  MathSciNet  Google Scholar 

  30. Liu, L., Tian, B., Yuan, Y.Q., Du, Z.: Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations. Phys. Rev. E 97, 052217 (2018)

    Article  MathSciNet  Google Scholar 

  31. Xu, Z.W., Yu, G.F., Zhu, Z.N.: Bright-dark soliton solutions of the multi-component AB system. Wave Motion 83, 134 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wu, C.F., Grimshaw, R.H.J., Chow, K.W., Chan, H.N.: A coupled “AB’’ system: rogue waves and modulation instabilities. Chaos 25, 103113 (2015)

    Article  MathSciNet  Google Scholar 

  33. Ding, C.C., Gao, Y.T., Hu, L., Deng, G.F., Zhang, C.Y.: Vector bright soliton interactions of the two-component AB system in a baroclinic fluid. Chaos Soliton. Fract. 142, 110363 (2021)

    Article  MathSciNet  Google Scholar 

  34. Su, J.J., Gao, Y.T., Jia, T.T., Deng, G.F.: Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Phys. Rev. E 100, 42210 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Fund for Excellent Young Scholars of China under Grant No. 51722812.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Jing Su.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Ethical approval

This research does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The \(\Theta ^{(n)}_{\Gamma _1,\Gamma _2,\cdots ,\Gamma _j;\Gamma '_1,\Gamma '_2,\cdots ,\Gamma '_{j-1}}\) and \(\Theta _{\Gamma _1,\Gamma _2,\cdots ,\Gamma _j;\Gamma '_1,\Gamma '_2,\cdots ,\Gamma '_{j}}\) are expressed as follows:

$$\begin{aligned}&\Theta ^{(n)}_{\Gamma _1,\Gamma _2,\cdots ,\Gamma _j;\Gamma '_1,\Gamma '_2,\cdots ,\Gamma '_{j-1}}\\&= \frac{\prod \limits _{1\le \imath<\jmath \le j}\left( k_{\Gamma _\imath }{-}k_{\Gamma _\jmath }\right) \prod \limits _{1\le \imath<\jmath \le j-1}\left( k_{\Gamma '_\imath }{-}k_{\Gamma '_\jmath }\right) }{\prod \limits _{1\le \imath<\jmath \le j}\left( k_{\Gamma _\imath }{+}k_{\Gamma _\jmath }\right) \prod \limits _{1\le \imath<\jmath \le j-1}\left( k_{\Gamma '_\imath }{+}k_{\Gamma '_\jmath }\right) \prod \limits _{1\le \imath \le j,1\le \jmath \le j-1}\left( k_{\Gamma _\imath }+k_{\Gamma '_\jmath }\right) ^2 }\\&\quad \times \sum _{\gamma =1}^j \left[ \sum _{\begin{array}{c} 1\le p_1<p_2<\cdots<p_\gamma \le j\\ 1\le q_1<q_2<\cdots<q_{\gamma -1}\le j-1 \end{array}} ^{\begin{array}{c} \{q_\gamma<q_{\gamma +1}<\cdots<q_{j-1} \}=\{1,2,\cdots ,j-1\} \backslash \{q_1, q_2,\cdots ,q_{\gamma -1}\}\\ \{p_{\gamma +1}<p_{\gamma +2}<\cdots<p_{j}\}=\{1,2,\cdots ,j\} \backslash \{p_1, p_2,\cdots ,p_\gamma \} \end{array}}\right. \\&\quad \left. \left( (-1)^{{\tilde{t}}_1+{\tilde{t}}_2} \prod _{r=1}^{\gamma } \varrho ^{(n)}_{\Gamma _{p_{r}}} \prod _{r=1}^{\gamma -1} { \varrho ^{(n)}_{\Gamma '_{q_{r}}} }^*\prod _{s=1}^{j-\gamma } {\varrho ^{(3-n)}_{\Gamma _{p_{\gamma +s}}} } \prod _{s=1}^{j-\gamma } {\varrho ^{(3-n)}_{\Gamma '_{q_{\gamma +s-1}}}}^*\tilde{\Delta }\right) \right] ,\\&\quad {\tilde{t}}_1=t\left( \Gamma _{p_1},\Gamma _{p_2},\cdots ,\Gamma _{p_\gamma },\Gamma _{p_{\gamma +1}},\Gamma _{p_{\gamma +2}},\cdots , \Gamma _{p_j}\right) ,\\&\quad {\tilde{t}}_2=t\left( \Gamma '_{q_1},\Gamma '_{q_2},\cdots ,\Gamma '_{q_{\gamma -1}},\Gamma '_{q_{\gamma }}, \Gamma '_{q_{\gamma +1}},\cdots ,\Gamma '_{q_{j-1}} \right) ,\\&\quad \tilde{\Delta }=\prod _{1\le \imath<\jmath \le \gamma }\left( {k_{\Gamma _{p_\imath }}}^2-{k_{\Gamma _{p_{\jmath }}}}^2 \right) \prod _{1\le \imath<\jmath \le \gamma -1}\left( {k_{\Gamma '_{q_\imath }}^*}^2-{k_{\Gamma '_{q_{\jmath }}}^*}^2 \right) \\&\quad \times \prod _{\gamma +1\le \imath<\jmath \le j}\left( {k_{\Gamma _{p_\imath }}}^2-{k_{\Gamma _{p_{\jmath }}}}^2 \right) \prod _{\gamma \le \imath<\jmath \le j-1}\left( {k_{\Gamma '_{q_\imath }}^*}^2-{k_{\Gamma '_{q_{\jmath }}}^*}^2 \right) \\&\qquad \prod _{1\le \imath \le \gamma \le \jmath \le j-1}\left( {k_{\Gamma _{p_\imath }}}^2-{k_{\Gamma '_{q_{\jmath }}}^*}^2 \right) \prod _{1\le \imath \le \gamma -1<\gamma +1\le \jmath \le j}\left( {k_{\Gamma '_{q_\imath }}^*}^2-{k_{\Gamma _{p_{\jmath }}}}^2 \right) ,\\&\quad \Theta _{\Gamma _1,\Gamma _2,\cdots ,\Gamma _j;\Gamma '_1,\Gamma '_2,\cdots ,\Gamma '_{j}}\\&\quad = \frac{\prod \limits _{1\le \imath<\jmath \le j}\left( k_{\Gamma _\imath }-k_{\Gamma _\jmath }\right) \prod \limits _{1\le \imath<\jmath \le j}\left( k_{\Gamma '_\imath }-k_{\Gamma '_\jmath }\right) }{\prod \limits _{1\le \imath<\jmath \le j}\left( k_{\Gamma _\imath }+k_{\Gamma _\jmath }\right) \prod \limits _{1\le \imath<\jmath \le j}\left( k_{\Gamma '_\imath }+k_{\Gamma '_\jmath }\right) \prod \limits _{1\le \imath \le j,1\le \jmath \le j}\left( k_{\Gamma _\imath }+k_{\Gamma '_\jmath }\right) ^2 }\\&\quad \times \sum _{\gamma =1}^j \left[ \sum _{\begin{array}{c} 1\le p_1<p_2<\cdots<p_\gamma \le j\\ 1\le q_1<q_2<\cdots<q_{\gamma }\le j \end{array}} ^{\begin{array}{c} \{q_{\gamma +1}<q_{\gamma +2}<\cdots<q_{j}\}=\{1,2,\cdots ,j\} \backslash \{q_1, q_2,\cdots ,q_\gamma \}\\ \{p_{\gamma +1}<p_{\gamma +2}<\cdots<p_{j}\}=\{1,2,\cdots ,j\} \backslash \{p_1, p_2,\cdots ,p_\gamma \} \end{array}}\right. \\&\quad \left. \left( (-1)^{{\hat{t}}_1+{\hat{t}}_2} \prod _{r=1}^{\gamma } \varrho ^{(1)}_{\Gamma _{p_{r}}} \prod _{r=1}^{\gamma } { \varrho ^{(1)}_{\Gamma '_{q_{r}}} }^*\prod _{s=1}^{j-\gamma } {\varrho ^{(2)}_{\Gamma _{p_{\gamma +s}}} } \prod _{s=1}^{j-\gamma } {\varrho ^{(2)}_{\Gamma '_{q_{\gamma +s}}}}^*{\hat{\Delta }}\right) \right] ,\\&\quad {\hat{t}}_1=t\left( \Gamma _{p_1},\Gamma _{p_2},\cdots ,\Gamma _{p_\gamma },\Gamma _{p_{\gamma +1}},\Gamma _{p_{\gamma +2}},\cdots , \Gamma _{p_j}\right) ,\\&\quad {\hat{t}}_2=t\left( \Gamma '_{q_1},\Gamma '_{q_2},\cdots ,\Gamma '_{q_{\gamma }},\Gamma '_{q_{\gamma +1}}, \Gamma '_{q_{\gamma +2}},\cdots ,\Gamma '_{q_{j}} \right) ,\\&\quad {\hat{\Delta }}=\prod _{1\le \imath<\jmath \le \gamma }\left( {k_{\Gamma _{p_\imath }}}^2-{k_{\Gamma _{p_{\jmath }}}}^2 \right) \prod _{1\le \imath<\jmath \le \gamma }\left( {k_{\Gamma '_{q_\imath }}^*}^2-{k_{\Gamma '_{q_{\jmath }}}^*}^2 \right) \\&\quad \times \prod _{\gamma +1\le \imath<\jmath \le j}\left( {k_{\Gamma _{p_\imath }}}^2-{k_{\Gamma _{p_{\jmath }}}}^2 \right) \prod _{\gamma +1\le \imath<\jmath \le j}\left( {k_{\Gamma '_{q_\imath }}^*}^2-{k_{\Gamma '_{q_{\jmath }}}^*}^2 \right) \\&\quad \prod _{1\le \imath \le \gamma< \jmath \le j}\left( {k_{\Gamma _{p_\imath }}}^2-{k_{\Gamma '_{q_{\jmath }}}^*}^2 \right) \prod _{1\le \imath \le \gamma <\jmath \le j}\left( {k_{\Gamma '_{q_\imath }}^*}^2-{k_{\Gamma _{p_{\jmath }}}}^2 \right) ,\\ \end{aligned}$$

where \(t\left( \Gamma _{p_1},\Gamma _{p_2},\cdots ,\Gamma _{p_\gamma },\Gamma _{p_{\gamma +1}},\Gamma _{p_{\gamma +2}},\cdots , \Gamma _{p_j}\right) \) denotes the inversion number of the sequence \(\left( \Gamma _{p_1},\Gamma _{p_2},\cdots ,\Gamma _{p_\gamma },\Gamma _{p_{\gamma +1}},\Gamma _{p_{\gamma +2}},\cdots , \Gamma _{p_j}\right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, JJ., Zhang, S. & Ding, CC. Spatiotemporal distortion effects and interaction properties for certain nonlinear waves of the generalized AB system. Nonlinear Dyn 106, 2415–2429 (2021). https://doi.org/10.1007/s11071-021-06655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06655-1

Keywords

Navigation