Skip to main content
Log in

Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We use the physics-informed neural network to solve a variety of femtosecond optical soliton solutions of the high-order nonlinear Schrödinger equation, including one-soliton solution, two-soliton solution, rogue wave solution, W-soliton solution and M-soliton solution. The prediction error for one-soliton, W-soliton and M-soliton is smaller. As the prediction distance increases, the prediction error will gradually increase. The unknown physical parameters of the high-order nonlinear Schrödinger equation are studied by using rogue wave solutions as data sets. The neural network is optimized from three aspects including the number of layers of the neural network, the number of neurons, and the sampling points. Compared with previous research, our error is greatly reduced. This is not a replacement for the traditional numerical method, but hopefully to open up new ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peregrine, D.H.: Water waves, nonlinear Schrodinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16–43 (1983)

    Article  MathSciNet  Google Scholar 

  2. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Han, H.B., Li, H.J., Dai, C.Q.: Wick-type stochastic multi-soliton and soliton molecule solutions in the framework of nonlinear Schrödinger equation. Appl. Math. Lett. 120, 107302 (2021)

    Article  Google Scholar 

  4. Li, P.F., Li, R.J., Dai, C.Q.: Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction. Opt. Express 29, 3193–3209 (2021)

    Article  Google Scholar 

  5. Wang, B.H., Wang, Y.Y., Dai, C.Q., Chen, Y.X.: Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation. Alex. Eng. J. 59, 4699–4707 (2020)

    Article  Google Scholar 

  6. Kodama, Y., Hasegawa, A.: Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron 23, 510–515 (1987)

    Article  Google Scholar 

  7. Marcucci, G., Pierangeli, D., Conti, C.: Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks, and solitons. Phys. Rev. Lett 125, 093901 (2020)

    Article  Google Scholar 

  8. Bar-Sinai, Y., Hoyer, S., Hickey, J., et al.: Learning data driven discretizations for partial differential equations. PNAS 116, 15344–15349 (2019)

    Article  MathSciNet  Google Scholar 

  9. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn 95, 3041–3048 (2019)

    Article  Google Scholar 

  10. Zhang, R.F., Bilige, S., et al.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Article  Google Scholar 

  11. Zhang, R.F., Li, M.C., et al.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  Google Scholar 

  12. Urbaniak, I., Wolter, M.: Quality assessment of compressed and resized medical images based on pattern recognition using a convolutional neural network. Commun. Nonlin. Sci. Numer. Simul. 95, 105582 (2021)

    Article  MathSciNet  Google Scholar 

  13. Ge, C.P., Liu, Z., Fang, L.M., et al.: A hybrid fuzzy convolutional neural network based mechanism for photovoltaic cell defect detection with electroluminescence images. IEEE Trans. Parallel Distrib. Syst. 32, 1653–1664 (2021)

    Article  Google Scholar 

  14. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotech-nol 33, 831–838 (2015)

    Article  Google Scholar 

  15. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  16. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  17. P. Johri, J. K. Verma, S. Paul (ed.), Applications of Machine Learning, Springer Singapore, (2020).

  18. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw 9, 987–1000 (1998)

    Article  Google Scholar 

  19. Liu, Y., Yi, Xu., Ma, J.: Synchronization and spatial patterns in a light-dependent neural network. Commun. Nonlin. Sci. Numer. Simul. 89, 105297 (2020)

    Article  MathSciNet  Google Scholar 

  20. Raissi, M., Perdikaris, P., Karniadakis, G.E.: physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Compt. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  21. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

    Article  MathSciNet  Google Scholar 

  22. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical Gaussian processes for time-dependent and non-linear partial differential equations. SIAM J. Sci. Comput. 40, A172–A198 (2017)

    Article  Google Scholar 

  23. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367, 1026–1030 (2020)

    Article  MathSciNet  Google Scholar 

  24. Jagtap, A.D., Kharazmi, E., Karniadakis, G.E.: Conservative physics-informed neural networks on discrete domains for conser-vation laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Engrg 365, 113028 (2020)

    Article  MathSciNet  Google Scholar 

  25. Rudy, H.S., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of partial differential equations. Sci. Adv. 3, 2375–2548 (2016)

    Google Scholar 

  26. Wang, L., Yan, Z.Y.: Data-driven rogue waves and parameter discovery in the defocusing NLS equation with a potential using the PINN deep learning. Phys. Lett. A 404, 127408 (2021)

    Article  MathSciNet  Google Scholar 

  27. Pu, J.C., Li, J., Chen, Y.: Soliton, breather and rogue wave solutions for solving the nonlinear schrodinger equation using a deep learning method with physical constraints. Chin. Phys. B (2021). https://doi.org/10.1088/1674-1056/abd7e3

    Article  Google Scholar 

  28. Xu, Z.Y., Li, L., Li, Z.H., Zhou, G.S.: Modulation instability and solitons on a cw background in an optical fiber with higher-order effects. Phys. Rev. E 67, 026603 (2003)

    Article  MathSciNet  Google Scholar 

  29. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks. Proc. R. Soc. A 476, 2239 (2020)

    Article  Google Scholar 

  30. Tao, Y.S., He, J.S.: Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E 85, 026601 (2012)

    Article  Google Scholar 

  31. Stein, M.L.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29, 143–151 (1987)

    Article  MathSciNet  Google Scholar 

  32. Xu, Z.Y., Li, L., Li, Z.H., Zhou, G.S.: Soliton interaction under the influence of higher-order effects. Optics Communications 210, 375–384 (2002)

    Article  Google Scholar 

  33. Li, Z.H., Li, L., Tian, H.P., Zhou, G.S.: New types of solitary wave solutions for the higher order nonlinear Schrödinger equation. Phys. Rev. Lett 84, 18 (1999)

    Google Scholar 

  34. Tian, J.P., Tian, H.P., Li, Z.H., Kang, L.S., Zhou, G.S.: An inter-modulated solitary wave solution for the higher order nonlinear Schrödinger equation. Phys. Scr. 67, 325–328 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR20A050001), the National Natural Science Foundation of China (Grant Nos. 12075210 and 11874324) and the Scientific Research and Developed Fund of Zhejiang A&F University (Grant No. 2021FR0009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue-Yue Wang or Chao-Qing Dai.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical Standards

This research does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Fang and G. Z. Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Wu, GZ., Wang, YY. et al. Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn 105, 603–616 (2021). https://doi.org/10.1007/s11071-021-06550-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06550-9

Keywords

Navigation