Skip to main content
Log in

Analytical criterion of a multimodal snap-through flutter of thin-walled panels with initial imperfections

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work deals with snap-through flutter dynamics of thin-walled shallow panels accompanied by flexural mode transitions assuming cylindrical bending conditions. The problem is therefore multimodal and, in addition, essentially non-local due to the presence of multiple equilibrium positions. The corresponding analysis is based on the asymptotic of a perfectly flexible panel with a continuous manifold of equilibrium configurations. It is assumed that trajectories of the snap-through dynamics are close to such a manifold, which is interpreted as a family of generating solutions. It is shown that the two-mode approximation depicts major physical specifics of the snap-through process, whereas higher modes can be reasonably treated as a perturbation. As a main result of the analysis, the analytical estimate for the critical speed of airflow leading to the cyclical snap-through flutter is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  2. Amabili, M., Pellicano, F.: Nonlinear supersonic flutter of circular cylindrical shells. AIAA J. 39(4), 564–573 (2001)

    Article  Google Scholar 

  3. Amabili, M., Pellicano, F.: Multimode approach to nonlinear supersonic flutter of imperfect circular cylindrical shells. J. Appl. Mech. 69(12), 117–129 (2002)

    Article  Google Scholar 

  4. Arena, A., Lacarbonara, W.: Nonlinear parametric modeling of suspension bridges under aeroelastic forces: torsional divergence and flutter. Nonlinear Dyn. 70(4), 2487–2510 (2012)

    Article  MathSciNet  Google Scholar 

  5. Arena, A., Lacarbonara, W., Marzocca, P.: Post-critical behavior of suspension bridges under nonlinear aerodynamic loading. J. Comput. Nonlinear Dyn. 11(1), 011005 (2016)

    Article  Google Scholar 

  6. Arena, A., Tal, M., Snyder, M., Lacarbonara, W.: Enhancing flutter stability in nanocomposite thin panels by harnessing cnt/polymer dissipation. Mech. Res. Commun. 104, 103495 (2020)

    Article  Google Scholar 

  7. Ashley, H., Zartarian, G.: Piston theory - a new aerodynamic tool for the aeroelastician. J. Aeronaut. Sci. 23(12), 1109–1118 (1956)

    Article  MathSciNet  Google Scholar 

  8. Bolotin, V.: Nonconservative Problems of the Theory of Elastic Stability. Pergammon Press Book, Macmillan (1963)

    MATH  Google Scholar 

  9. Bolotin, V., Grishko, A., Kounadis, A., Gantes, C., Roberts, J.: Influence of initial conditions on the postcritical behavior of a nonlinear aeroelastic system. Nonlinear Dyn. 15, 63–81 (1998)

    Article  MathSciNet  Google Scholar 

  10. Bolotin, V., Grishko, A., Petrovsky, A.: Secondary bifurcations and global instability of an aeroelastic non-linear system in the divergence domain. J. Sound Vib. 191(3), 431–451 (1996)

    Article  Google Scholar 

  11. Dowell, E.: Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system. J. Sound Vib. 85(3), 333–344 (1982)

    Article  MathSciNet  Google Scholar 

  12. Dowell, E.H.: Aeroelastic stability of plates and shells: An innocent’s guide to the literature. In: Leipholz, L. (ed.) Instability of Continuous Systems. Springer-Verlag, Berlin (1971)

    Google Scholar 

  13. Dowell, H.: A Modern Course in Aeroelasticity: Fifth Revised and Enlarged Edition. Solid Mechanics and Its Applications. Springer, Berlin (2014)

    Google Scholar 

  14. Fung, Y.C.: On two-dimensional panel flutter. J. Aerosp. Sci. 25(3), 145–160 (1958)

    Article  Google Scholar 

  15. Gee, D.: Numerical continuation applied to panel flutter. Nonlinear Dyn. 22, 271–280 (2000)

    Article  Google Scholar 

  16. Hsu, C.: The effects of various parameters on the dynamic stability of a shallow arch. ASME. J. Appl. Mech. 34(2), 349–358 (1967)

    Article  Google Scholar 

  17. Kauderer, H.: Nichtlineare Mechanik. Springer-Verlag, Berlin (1958)

    Book  Google Scholar 

  18. Krumhaar, H.: The accuracy of linear piston theory when applied to cylindrical shells. AIAA J. 1(6), 1448–1449 (1963)

    Article  Google Scholar 

  19. Lacarbonara, W., Arena, A.: Flutter of an arch bridge via a fully nonlinear continuum formulation. J. Aerosp. Eng. 24(1), 112–123 (2011)

    Article  Google Scholar 

  20. Librescu, L.: Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-Type Structures. Mechanics of Elastic Stability. Springer, Netherlands (1975)

    MATH  Google Scholar 

  21. Liu, D., Dowell, E.: The secondary bifurcation of an aeroelastic airfoil motion: Effect of high harmonics. Nonlinear Dyn. 37, 31–49 (2004)

    Article  MathSciNet  Google Scholar 

  22. Manevich, L.I., Mikhlin, Y.V., Pilipchuk, V.N.: Metod normalnykh kolebanii dlya sushchestvenno nelineinykh sistem. Nauka, Moscow (1989)

    MATH  Google Scholar 

  23. Miller, B.A., McNamara, J.J., Spottswood, S., Culler, A.: The impact of flow induced loads on snap-through behavior of acoustically excited, thermally buckled panels. J. Sound Vib. 330(23), 5736–5752 (2011)

    Article  Google Scholar 

  24. Nagaev, R.F., Pilipchuk, V.N.: Nonlinear dynamics of a conservative system that degenerates to a system with a singular set. Prikl. Mat. Mekh. 53(2), 190–195 (1989)

    MathSciNet  Google Scholar 

  25. Pacheco, D.R., Marques, F., Ferreira, A.J.: Panel flutter suppression with nonlinear energy sinks: Numerical modeling and analysis. Int. J. Non-Linear Mech. 106, 108–114 (2018)

    Article  Google Scholar 

  26. Pilipchuk, V.: Method of investigating nonlinear dynamics problems of rectangular plates with initial imperfections. Soviet Appl. Mech. 22, 162–168 (1986)

    Article  Google Scholar 

  27. Shishaeva, A., Vedeneev, V., Aksenov, A.: Nonlinear single-mode and multi-mode panel flutter oscillations at low supersonic speeds. J. Fluids Struct. 56, 205–223 (2015)

    Article  Google Scholar 

  28. Xie, D., Xu, M., Dai, H., Chen, T.: New look at nonlinear aerodynamics in analysis of hypersonic panel flutter. Math. Problems Eng. 2017, 6707092 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Pilipchuk.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilipchuk, V. Analytical criterion of a multimodal snap-through flutter of thin-walled panels with initial imperfections. Nonlinear Dyn 102, 1181–1195 (2020). https://doi.org/10.1007/s11071-020-06032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06032-4

Keywords

Navigation