Skip to main content
Log in

Finite-time stability of nonlinear systems with state-dependent delayed impulses

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the issue of finite-time stability (FTS) and finite-time contractive stability (FTCS) of nonlinear systems involving state-dependent delayed impulsive perturbation. Several sufficient conditions are obtained by using theories of impulsive control and Lyapunov stability. The relation between impulsive perturbation and state-dependent delay is established to achieve FTS and FTCS. For time-varying nonlinear system and nonlinear system with fixed parameters, we derive some sufficient conditions based on the main thought of this paper, respectively. Finally, three numerical examples are provided to illustrate the effectiveness and validity of achieved results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akhmet, M.: Principles of Discontinuous Dynamical Systems. Springer Science and Business Media, Berlin (2010)

    Book  Google Scholar 

  2. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MathSciNet  Google Scholar 

  3. Dorato, P.: Short-time Stability in Linear Time-varying Systems. Technical Reports on Polytechnic Institute of Brooklyn Ny Microwave Research Inst (1961)

  4. Dorato, P., Abdallah, C., Famularo, D.: Robust finite-time stability design via linear matrix inequalities. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 2 (pp. 1305–1306). IEEE (1997)

  5. Hu, T., He, Z., Zhang, X., Zhong, S.: Finite-time stability for fractional-order complex-valued neural networks with time delay. Appl. Math. Comput. 365, 124715 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Huang, T., Li, C., Duan, S., Starzyk, J.A.: Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans. Neural Netw. Learn. Syst. 23(6), 866–875 (2012)

    Article  Google Scholar 

  7. Kamenkov, G.: On stability of motion over a finite interval of time. J. Appl. Math. Mech. USSR 17(2), 529–540 (1953)

    MathSciNet  Google Scholar 

  8. Lakshmikantham, V., Simeonov, P.S., et al.: Theory of Impulsive Differential Equations, vol. 6. World Scientific, Singapore (1989)

    Book  Google Scholar 

  9. Li, C., Zhou, Y., Wang, H., Huang, T.: Stability of nonlinear systems with variable-time impulses: B-equivalence method. Int. J. Control Autom. Syst. 15(5), 2072–2079 (2017)

    Article  Google Scholar 

  10. Li, H., Li, C., Huang, T., Zhang, W.: Fixed-time stabilization of impulsive cohen-grossberg bam neural networks. Neural Netw. 98, 203–211 (2018)

    Article  Google Scholar 

  11. Li, X., Cao, J.: An impulsive delay inequality involving unbounded time-varying delay and applications. IEEE Trans. Autom. Control 62(7), 3618–3625 (2017)

    Article  MathSciNet  Google Scholar 

  12. Li, X., Ho, D.W., Cao, J.: Finite-time stability and settling-time estimation of nonlinear impulsive systems. Automatica 99, 361–368 (2019)

    Article  MathSciNet  Google Scholar 

  13. Li, X., Wu, J.: Stability of nonlinear differential systems with state-dependent delayed impulses. Automatica 64, 63–69 (2016)

    Article  MathSciNet  Google Scholar 

  14. Li, X., Wu, J.: Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay. IEEE Trans. Autom. Control 63(1), 306–311 (2018)

    Article  MathSciNet  Google Scholar 

  15. Li, X., Yang, X., Huang, T.: Persistence of delayed cooperative models: impulsive control method. Appl. Math. Comput. 342, 130–146 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Li, X., Yang, X., Song, S.: Lyapunov conditions for finite-time stability of time-varying time-delay systems. Automatica 103, 135–140 (2019)

    Article  MathSciNet  Google Scholar 

  17. Liu, B., Xu, B., Zhang, G., Tong, L.: Review of some control theory results on uniform stability of impulsive systems. Mathematics 7(12), 1186 (2019)

    Article  Google Scholar 

  18. Liu, X., Ballinger, G.: Uniform asymptotic stability of impulsive delay differential equations. Comput. Math. Appl. 41(7–8), 903–915 (2001)

    Article  MathSciNet  Google Scholar 

  19. Liu, X., Zhang, K.: Synchronization of linear dynamical networks on time scales: pinning control via delayed impulses. Automatica 72, 147–152 (2016)

    Article  MathSciNet  Google Scholar 

  20. Lu, J., Ho, D.W., Cao, J.: A unified synchronization criterion for impulsive dynamical networks. Automatica 46(7), 1215–1221 (2010)

    Article  MathSciNet  Google Scholar 

  21. Lu, W., Liu, X., Chen, T.: A note on finite-time and fixed-time stability. Neural Netw. 81, 11–15 (2016)

    Article  Google Scholar 

  22. Lv, X., Li, X.: Finite time stability and controller design for nonlinear impulsive sampled-data systems with applications. ISA Trans. 70, 30–36 (2017)

    Article  Google Scholar 

  23. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55(3), 531–534 (1992)

    Article  MathSciNet  Google Scholar 

  24. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29(01), 1450239 (2015)

    Article  Google Scholar 

  25. Ma, J., Zhang, A., Xia, Y., Zhang, L.: Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems. Appl. Math. Comput. 215(9), 3318–3326 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Mobayen, S., Ma, J.: Robust finite-time composite nonlinear feedback control for synchronization of uncertain chaotic systems with nonlinearity and time-delay. Chaos Solitons Fractals 114, 46–54 (2018)

    Article  MathSciNet  Google Scholar 

  27. Onori, S., Dorato, P., Galeani, S., Abdallah, C.: Finite time stability design via feedback linearization. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 4915–4920. IEEE (2005)

  28. Rong, N., Wang, Z.: Finite-time stabilization of nonlinear systems using an event-triggered controller with exponential gains. Nonlinear Dyn. 98(1), 15–26 (2019)

    Article  Google Scholar 

  29. Song, Q., Yan, H., Zhao, Z., Liu, Y.: Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects. Neural Netw. 79, 108–116 (2016)

    Article  Google Scholar 

  30. Tang, Z., Park, J.H., Wang, Y., Feng, J.: Distributed impulsive quasi-synchronization of Lur’e networks with proportional delay. IEEE Trans. Cybern. 49(8), 3105–3115 (2018)

    Article  Google Scholar 

  31. Tang, Z., Park, J.H., Wang, Y., Feng, J.: Parameters variation-based synchronization on derivative coupled Lur’e networks. IEEE Trans. Syst. Man Cybern. Syst. 1–11 (2018)

  32. Wang, X., Yu, J., Li, C., Wang, H., Huang, T., Huang, J.: Robust stability of stochastic fuzzy delayed neural networks with impulsive time window. Neural Netw. 67, 84–91 (2015)

    Article  Google Scholar 

  33. Weiss, L., Infante, E.: Finite time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 12(1), 54–59 (1967)

    Article  MathSciNet  Google Scholar 

  34. Xu, N., Sun, L.: Synchronization control of Markov jump neural networks with mixed time-varying delay and parameter uncertain based on sample point controller. Nonlinear Dyn. 98, 1877–1890 (2019)

    Article  Google Scholar 

  35. Yang, X., Li, C., Huang, T., Song, Q.: Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl. Math. Comput. 293, 416–422 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Yang, X., Lu, J.: Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Trans. Autom. Control 61(8), 2256–2261 (2015)

    Article  MathSciNet  Google Scholar 

  37. Zhang, W., Li, C., Yang, S., Yang, X.: Exponential synchronisation of complex networks with delays and perturbations via impulsive and adaptive control. IET Control Theory Appl. 13(3), 395–402 (2018)

    Article  MathSciNet  Google Scholar 

  38. Zhang, W., Yang, X., Li, C.: Fixed-time stochastic synchronization of complex networks via continuous control. IEEE Trans. Cybern. 49(8), 3099–3104 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was founded by the National Natural Science Foundation of China under Grants 61873213, 61633011 and partly by National Key Research and Development Project under Grant 2018AAA0100101 and Graduate Student Research Innovation Project of Chongqing (No. CYB20110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, C. Finite-time stability of nonlinear systems with state-dependent delayed impulses. Nonlinear Dyn 102, 197–210 (2020). https://doi.org/10.1007/s11071-020-05953-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05953-4

Keywords

Navigation