Skip to main content
Log in

Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Fatigue is inevitable in pipes conveying fluid due to unwanted vibration. Internal resonance occurs in such pipes due to pre-pressure. For the first time, the effects of vibration on the fatigue of fluid-conveying pipes are investigated in this paper. The influences of the internal resonance and the axially functionally graded materials on the fatigue of the pipes are analyzed, aiming at improving mechanical properties and increasing fatigue life. The Galerkin method and the direct multi-scale method are used to construct the solvability condition for the primary resonance and 1:3 internal resonance. Approximate analytical solutions are derived for presenting the nonlinear dynamics of the pipes. The tensile, bending, and resultant stress distribution of the axially functionally graded pipe in internal resonance is determined. The results of the fatigue analysis demonstrate that internal resonance can shorten the fatigue life of axially functionally graded pipes. Reducing the distribution coefficient of functionally graded pipe is beneficial for reducing the resonance response and maximum stress of the pipe conveying fluid. The numerical integration results support the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

L :

Length of the pipe

A :

Cross-sectional area of the pipe

P :

Axial pre-pressure

E(x):

Elastic modulus of the pipe

\(\rho (x)\) :

Density of the pipe

\(\alpha _{E}\) :

Elastic modulus ratio between the two ends

\(\alpha _{\rho }\) :

Density ratio between the two ends

M :

Fluid mass per unit length

m :

Pipe mass per unit length

U :

Steady velocity of the fluid

w(xt):

Transverse displacement of the pipe

x :

x-axial coordinate

y :

y-axial coordinate

\(\xi \) :

Dimensionless x-axial coordinate

\(\eta \) :

Dimensionless transverse displacement of the pipe

u :

Dimensionless steady velocity of the fluid

\(\beta \) :

Ratio between pipe mass and fluid mass per length at the initial end

\(\alpha (\xi )\) :

Dimensionless mass per unit length

p :

Dimensionless axial pre-pressure

\(u_{0}\) :

Dimensionless mean velocity of the fluid

\(\mu \) :

The perturbation amplitude of the fluid velocity

\(\varOmega _{1}\) :

The perturbation frequency of the fluid velocity

\(\varepsilon \) :

Book-keeping parameter

\(\varTheta _{n}(\xi )\) :

nth mode function

\(\omega _{\mathrm{n}}\) :

nth natural frequency

\(p_{kn}\) :

Harmonic coefficient

\(q_{kn}\) :

Harmonic coefficient

\(\theta _{1}\) :

Detuning factors

\(\theta _{2}\) :

Detuning factors

\(\Gamma \) :

Coefficients of nonlinear algebraic equations

\(a_{n}\) :

Amplitude of nth mode

\(A_{n}(T_{1},T_{2})\) :

The amplitude function of the nth mode

References

  1. Ibrahim, R.A.: Mechanics of pipes conveying fluids. J. Press. Vessel -T. ASME 132, 034001 (2010)

    Google Scholar 

  2. Moussou, P.: An excitation spectrum criterion for the vibration-induced fatigue of small bore pipes. J. Fluids Struct. 18, 149–163 (2003)

    Google Scholar 

  3. Chen, S.: Forced vibration of a cantilevered tube conveying fluid. J. Acoust. Soc. Am. 48, 773–775 (1970)

    Google Scholar 

  4. McDonald, R.J., Sri Namachchivaya, N.: Pipes conveying pulsating fluid near a resonance: global bifurcations. J. Fluids Struct. 21, 665–687 (2005)

    Google Scholar 

  5. Xu, J., Yang, Q.: Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid (I). Appl. Math. Mech. 27, 935–941 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn. 49, 9–30 (2007)

    MATH  Google Scholar 

  7. Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances. J. Sound Vib. 309, 375–406 (2008)

    Google Scholar 

  8. Modarres-Sadeghi, Y., Païdoussis, M.P.: Nonlinear dynamics of extensible fluid-conveying pipes, supported at both ends. J. Fluids Struct. 25, 535–543 (2009)

    Google Scholar 

  9. Zhang, Y.L., Chen, L.Q.: Internal resonance of pipes conveying fluid in the supercritical regime. Nonlinear Dyn. 67, 1505–1514 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Chen, L.Q., Zhang, Y.L., Zhang, G.C., Ding, H.: Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed. Int. J. Non-Linear. Mech. 58, 11–21 (2014)

    Google Scholar 

  11. Mao, X.Y., Ding, H., Chen, L.Q.: Steady-state response of a fluid-conveying pipe with 3:1 internal resonance in supercritical regime. Nonlinear Dyn. 86, 795–809 (2016)

    Google Scholar 

  12. Tan, X., Mao, X.-Y., Ding, H., Chen, L.-Q.: Vibration around non-trivial equilibrium of a supercritial Timoshenko pipe conveying fluid. J. Sound Vib. 428, 104–118 (2018)

    Google Scholar 

  13. Ghayesh, M.H., Païdoussis, M.P.: Three-dimensional dynamics of a cantilevered pipe conveying fluid, additionally supported by an intermediate spring array. Int. J. Non-Linear. Mech. 45, 507–524 (2010)

    Google Scholar 

  14. Ghayesh, M.H., Païdoussis, M.P., Modarres-Sadeghi, Y.: Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass. J. Sound Vib. 330, 2869–2899 (2011)

    Google Scholar 

  15. Lü, L., Hu, Y.J., Wang, X.L., Ling, L., Li, C.G.: Dyanmical bifurcation and synchronization of two nonlinearly coupled fluid-conveying pipes. Nonlinear Dyn. 79, 2715–2734 (2014)

    MATH  Google Scholar 

  16. Li, Y., Yang, Y.: Forced vibration of pipe conveying fluid by the Green function method. Arch. Appl. Mech. 84, 1811–1823 (2014)

    Google Scholar 

  17. Ni, Q., Wang, Y.K., Tang, M., Luo, Y.Y., Yan, H., Wang, L.: Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dyn. 81, 893–906 (2015)

    Google Scholar 

  18. Ganiev, R.F., Il’gamov, M.A., Khakimov, A.G., Shakir’yanov, M.M.: Spatial vibrations of a pipeline in a continuous medium under the action of variable internal pressure. J. Mach. Manuf. Reliab. 45, 485–494 (2016)

    Google Scholar 

  19. Li, Y., Yang, Y.: Nonlinear vibration of slightly curved pipe with conveying pulsating fluid. Nonlinear Dyn. 88, 2513–2529 (2017)

    Google Scholar 

  20. Wu, K., Zhu, W.D.: A new global spatial discretization method for calculating dynamic responses of two-dimensional continuous systems with application to a rectangular Kirchhoff plate. J. Vib. Acoust. 140, 011002 (2017)

    Google Scholar 

  21. Zhang, Y.F., Yao, M.H., Zhang, W., Wen, B.C.: Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerosp. Sci. Technol. 68, 441–453 (2017)

    Google Scholar 

  22. Liang, F., Yang, X.D., Qian, Y.-J., Zhang, W.: Free vibration analysis of pipes conveying fluid based on linear and nonlinear complex modes approach. Int. J. Appl. Mech. 9, 1750112 (2017)

    Google Scholar 

  23. Liang, F., Yang, X.D., Qian, Y.-J., Zhang, W.: Transverse free vibration and stability analysis of spinning pipes conveying fluid. Int. J. Mech. Sci. 137, 195–204 (2018)

    Google Scholar 

  24. Liang, F., Yang, X.D., Zhang, W., Qian, Y.J.: Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment. J. Sound Vib. 417, 65–79 (2018)

    Google Scholar 

  25. Hu, Y.J., Zhu, W.D.: Vibration analysis of a fluid-conveying curved pipe with an arbitrary underformed configuration. Appl. Math. Model. 64, 624–642 (2018)

    MathSciNet  Google Scholar 

  26. Rong, B., Lu, K., Rui, X.-T., Ni, X.-J., Tao, L., Wang, G.-P.: Nonlinear dynamics analysis of pipe conveying fluid by riccati absolute nodal coordinate transfer matrix method. Nonlinear Dyn. 92, 699–708 (2018)

    Google Scholar 

  27. Yan, H., Dai, H.L., Ni, Q., Wang, L., Wang, Y.K.: Nonlinear dynamics of a sliding pipe conveying pipe. J. Fluid Struct. 81, 36–57 (2018)

    Google Scholar 

  28. Wang, Y.K., Wang, L., Ni, Q., Dai, H.L., Yan, H., Luo, Y.Y.: Non-planar responses of cantilevered pipes conveying fluid with intermediate motion constraints. Nonlinear Dyn. 93, 505–524 (2018)

    Google Scholar 

  29. Liu, Z.Y., Wang, L., Sun, X.P.: Nonlinear forced vibration of cantilevered pipes conveying fluid. Acta Mech. Solida Sin. 31, 32–50 (2018)

    Google Scholar 

  30. Peng, G., Xiong, Y.M., Liu, L.M., Gao, Y., Wang, M.H., Zhang, Z.: 3-D non-linear dynamics of inclined pipe conveying fluid, supported at both ends. J. Sound Vib. 449, 405–426 (2019)

    Google Scholar 

  31. Sazesh, S., Shams, S.: Vibration analysis of cantilever pipe conveying fluid under distributed random excitation. J. Fluid Struct. 87, 84–101 (2019)

    Google Scholar 

  32. Mamaghani, A.E., Khadem, S.E., Bab, S.: Vibration control of a pipe conveying fluid under external periodic excitation uing a nonlinear energy sink. Nonlinear Dyn. 86, 1761–1795 (2016)

    MATH  Google Scholar 

  33. Yang, T.Z., Liu, T., Tang, Y., Hou, S., Lv, X.F.: Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn. 97(3), 1937–1944 (2019)

    Google Scholar 

  34. Zhao, X.-Y., Zhang, Y.-W., Ding, H., Chen, L.-Q.: Vibration suppression of a nonlinear fluid-conveying pipe under harmonic foundation displacement excitation via nonlinear energy sink. Int. J. Appl. Mech. 10, 1850096 (2018)

    Google Scholar 

  35. Zhou, K., Xiong, F.R., Jiang, N.B., Dai, H.L., Yan, H., Wang, L., Ni, Q.: Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dyn. 95, 1435–1456 (2019)

    Google Scholar 

  36. Chen, H.-Y., Mao, X.-Y., Ding, H., Chen, L.-Q.: Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mech. Syst. Signal Pr. 135, 106383 (2020)

    Google Scholar 

  37. Lu, Z.-Q., Gu, D.-H., Ding, H., Lacarbonara, W., Chen, L.-Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Pr. 136, 106490 (2020)

    Google Scholar 

  38. Khazaee, M., Khadem, S.E., Moslemi, A., Abdollahi, A.: A comparative study on optimization of multiple essentially nonlinear isolators attached to a pipe conveying fluid. Mech. Syst. Signal Pr. 141, 106442 (2020)

    Google Scholar 

  39. Tang, Y., Yang, T.Z.: Bi-directional functionally graded nanotubes: fluid conveying dynamics. Int. J. Appl. Mech. 10, 1850041 (2018)

    Google Scholar 

  40. Yu, D., Wen, J., Zhao, H., Liu, Y., Wen, X.: Flexural vibration band gap in a periodic fluid-conveying pipe system based on the Timoshenko beam theory. J. Vib. Acoust. 133, 014502 (2011)

    Google Scholar 

  41. Gupta, A., Talha, M.: Recent development in modeling and analysis of functionally graded materials and structures. Prog. Aerosp. Sci. 79, 1–14 (2015)

    Google Scholar 

  42. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60, 195 (2007)

    Google Scholar 

  43. Udupa, G., Rao, S.S., Gangadharan, K.V.: Functionally graded composite materials: an overview. Procedia Mater. Sci. 5, 1291–1299 (2014)

    Google Scholar 

  44. Reddy, R.S., Panda, S., Gupta, A.: Nonlinear dynamics of an inclined FG pipe conveying pulsatile hot fluid. Int. J. Non-linear Mech. 118, 103276 (2020)

    Google Scholar 

  45. Sheng, G.G., Wang, X.: Dynamic characteristics of fluid-conveying functionally graded cylindrical shells under mechanical and thermal loads. Compos. Struct. 93, 162–170 (2010)

    Google Scholar 

  46. Deng, J., Liu, Y., Zhang, Z., Liu, W.: Dynamic behaviors of multi-span viscoelastic functionally graded material pipe conveying fluid. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231, 3181–3192 (2017)

    Google Scholar 

  47. Deng, J., Liu, Y., Zhang, Z., Liu, W.: Size-dependent vibration and stability of multi-span viscoelastic functionally graded material nanopipes conveying fluid using a hybrid method. Compos. Struct. 179, 590–600 (2017)

    Google Scholar 

  48. Deng, J., Liu, Y., Liu, W.: A hybrid method for transverse vibration of multi-span functionally graded material pipes conveying fluid with various volume fraction laws. Int. J. Appl. Mech. 09, 1750095 (2017)

    Google Scholar 

  49. Wang, Z.M., Liu, Y.Z.: Transverse vibration of pipe conveying fluid made of functionally graded materials using a symplectic method. Nucl. Eng. Des. 298, 149–159 (2016)

    Google Scholar 

  50. Tang, Y., Yang, T.: Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material. Compos. Struct. 185, 393–400 (2018)

    Google Scholar 

  51. Attia, M.A., Eltaher, M.A., Soliman, A., Abdelrahman, A., Alshorbagy, A.E.: Thermoelastic Crack analysis in functionally graded pipelines conveying natural gas by a fem. Int. J. Appl. Mech. 10, 1850036 (2018)

    Google Scholar 

  52. An, C., Su, J.: Dynamic Behavior of axially functionally graded pipes conveying fluid. Math. Probl. Eng. 2017, 1–11 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Zhou, X., Dai, H.L., Wang, L.: Dynamics of axially functionally graded cantilevered pipes conveying fluid. Compos. Struct. 190, 112–118 (2018)

    Google Scholar 

  54. Ding, H., Huang, L.L., Dowell, E., Chen, L.Q.: Stress distribution and fatigue life of nonlinear vibration of an axially moving beam. Sci. China Technol. Sci. 62, 1123–1133 (2019)

    Google Scholar 

  55. Tan, X., Ding, H., Chen, L.-Q.: Nonlinear frequencies and forced responses of pipes conveying fluid with a coupled Timoshenko model. J. Sound Vib. 455, 241–255 (2019)

    Google Scholar 

  56. Ye, S.-Q., Mao, X.-Y., Ding, H., Ji, J.-C., Chen, L.-Q.: Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions. Int. J. Mech. Sci. 168, 105294 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11772181, 11872037 and 11572182) and the Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, ZQ., Zhang, KK., Ding, H. et al. Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials. Nonlinear Dyn 100, 1091–1104 (2020). https://doi.org/10.1007/s11071-020-05577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05577-8

Keywords

Navigation