Skip to main content

Advertisement

Log in

A review on computational intelligence for identification of nonlinear dynamical systems

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work aims to provide a broad overview of computational techniques belonging to the area of artificial intelligence tailored for identification of nonlinear dynamical systems. Both parametric and nonparametric identification problems are considered. The examined computational intelligence techniques for parametric identification deal with genetic algorithm, particle swarm optimization, and differential evolution. Special attention is paid to the parameters estimation for a rich class of nonlinear dynamical models, including the Bouc–Wen model, chaotic systems, the Jiles–Atherton model, the LuGre model, the Prandtl–Ishlinskii model, the Preisach model, and the Wiener–Hammerstein model. On the other hand, genetic programming and artificial neural networks are discussed for nonparametric identification applications. Once the identification problem is formulated, a detailed illustration of the considered computational intelligence techniques is provided, together with a comprehensive examination of relevant applications in the fields of structural mechanics and engineering. Possible directions for future research are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdelmadjid, N., Elamine, N., Mouloud, F.: Neural network-DFT based model for magnetostrictive hysteresis. Int. J. Appl. Electromag. Mech. 42(3), 343–348 (2013)

    Google Scholar 

  2. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. Cognit. Sci. 9(1), 147–169 (1985)

    Google Scholar 

  3. Aguirre, L.A.: A bird’s eye view of nonlinear system identification. arXiv preprint. arXiv:1907.06803 (2019)

  4. Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Phys. Lett. A 144(6–7), 333–340 (1990)

    MathSciNet  Google Scholar 

  5. Ajavakom, N., Ng, C., Ma, F.: Performance of nonlinear degrading structures: identification, validation, and prediction. Comput. Struct. 86(7–8), 652–662 (2008)

    Google Scholar 

  6. Al-Dabbagh, R.D., Neri, F., Idris, N., Baba, M.S.: Algorithmic design issues in adaptive differential evolution schemes: review and taxonomy. Swarm Evolut. Comput. 43, 284–311 (2018)

    Google Scholar 

  7. Al-Duwaish, H.N.: A genetic approach to the identification of linear dynamical systems with static nonlinearities. Int. J. Syst. Sci. 31(3), 307–313 (2000)

    MATH  Google Scholar 

  8. Almeida, L.A.L., Deep, G.S., Lima, A., Neff, H.: Modeling a magnetostrictive transducer using genetic algorithm. J. Magn. Magn. Mater. 226, 1262–1264 (2001)

    Google Scholar 

  9. Antman, S.: Nonlinear Problems of Elasticity. Springer, New York (2005)

    MATH  Google Scholar 

  10. Arena, A., Lacarbonara, W.: Flutter of an arch bridge via a fully nonlinear continuum formulation. ASCE J. Aerosp. Eng. 24, 112–123 (2011)

    Google Scholar 

  11. Arena, A., Lacarbonara, W.: Nonlinear parametric modeling of suspension bridges under aeroelastic forces: torsional divergence and flutter. Nonlinear Dyn. 70, 2487–2510 (2012)

    MathSciNet  Google Scholar 

  12. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)

    Google Scholar 

  13. Arvin, H., Lacarbonara, W., Bakhtiari-Nejad, F.: A geometrically exact approach to the overall dynamics of rotating blades. Part II: nonlinear normal modes in flapping. Nonlinear Dyn. 70, 2279–2301 (2012)

    Google Scholar 

  14. Ashlock, W.: Using very small population sizes in genetic programming. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 319–326. IEEE (2006)

  15. Atabay, E., Ozkol, I.: Application of a magnetorheological damper modeled using the current-dependent Bouc–Wen model for shimmy suppression in a torsional nose landing gear with and without freeplay. J. Vib. Control 20(11), 1622–1644 (2014)

    Google Scholar 

  16. Bai, X.X., Chen, P., Qian, L.J.: Principle and validation of modified hysteretic models for magnetorheological dampers. Smart Mater. Struct. 24(8), 085014 (2015)

    Google Scholar 

  17. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the 2nd International Conference on Genetic Algorithms, pp. 14–21 (1987)

  18. Banerjee, A., Abu-Mahfouz, I.: A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems. Chaos Solitons Fractals 58, 65–83 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6(4), 467–484 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Barbieri, N., Barbieri, R., da Silva, R.A., Mannala, M.J., Barbieri, L.S.V.: Nonlinear dynamic analysis of wire-rope isolator and Stockbridge damper. Nonlinear Dyn. 86(1), 501–512 (2016)

    Google Scholar 

  21. Bartkowski, P., Zalewski, R., Chodkiewicz, P.: Parameter identification of Bouc–Wen model for vacuum packed particles based on genetic algorithm. Arch. Civil Mech. Eng. 19(2), 322–333 (2019)

    Google Scholar 

  22. Bebis, G., Georgiopoulos, M., Kasparis, T.: Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization. Neurocomputing 17(3–4), 167–194 (1997)

    Google Scholar 

  23. Begambre, O., Laier, J.E.: A hybrid particle swarm optimization-simplex algorithm (PSOS) for structural damage identification. Adv. Eng. Softw. 40(9), 883–891 (2009)

    MATH  Google Scholar 

  24. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Google Scholar 

  25. Bertsimas, D., Tsitsiklis, J., et al.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)

    MATH  Google Scholar 

  26. Bezdek, J.C.: Computational intelligence defined by everyone! In: Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications, pp. 10–37. Springer, New York (1998)

    Google Scholar 

  27. Bigoni, D.: Nonlinear Solid Mechanics. Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  28. Bishop, C.M.: Neural networks and their applications. Rev. Sci. Instrum. 65(6), 1803–1832 (1994)

    Google Scholar 

  29. Bishop, C.M.: Training with noise is equivalent to Tikhonov regularization. Neural Comput. 7(1), 108–116 (1995)

    Google Scholar 

  30. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  31. Blickle, T.: Evolving compact solutions in genetic programming: a case study. In: International Conference on Parallel Problem Solving from Nature, pp. 564–573. Springer, New York (1996)

    Google Scholar 

  32. Bolourchi, A., Masri, S.F., Aldraihem, O.J.: Development and application of computational intelligence approaches for the identification of complex nonlinear systems. Nonlinear Dyn. 79(2), 765–786 (2015a)

    Google Scholar 

  33. Bolourchi, A., Masri, S.F., Aldraihem, O.J.: Studies into computational intelligence and evolutionary approaches for model-free identification of hysteretic systems. Comput. Aided Civil Infrastruct. Eng. 30(5), 330–346 (2015b)

    Google Scholar 

  34. Bonyadi, M., Michalewicz, Z.: Particle swarm optimization for single objective continuous space problems: a review. Evol. Comput. 25(1), 1–54 (2017)

    Google Scholar 

  35. Bonyadi, M.R., Michalewicz, Z.: Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 20(3), 370–385 (2016)

    Google Scholar 

  36. Bosworth, J., Foo, N.Y., Zeigler, B.P.: Comparison of genetic algorithms with conjugate gradient methods. National Aeronautics and Space Administration (NASA CR-2093) (1972)

  37. Boubaker, S.: Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting. Nonlinear Dyn. 90(2), 797–814 (2017)

    Google Scholar 

  38. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, New York (2007)

    MATH  Google Scholar 

  39. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)

  40. Brewick, P.T., Masri, S.F.: An evaluation of data-driven identification strategies for complex nonlinear dynamic systems. Nonlinear Dyn. 85(2), 1297–1318 (2016)

    MathSciNet  Google Scholar 

  41. Brewick, P.T., Masri, S.F., Carboni, B., Lacarbonara, W.: Data-based nonlinear identification and constitutive modeling of hysteresis in NiTiNOL and steel strands. J. Eng. Mech. 142(12), 04016107 (2016)

    Google Scholar 

  42. Burton, S.A., Makris, N., Konstantopoulos, I., Antsaklis, P.: Modeling the response of ER damper: phenomenology and emulation. J. Eng. Mech. 122(9), 897–906 (1996)

    Google Scholar 

  43. Caraffini, F., Neri, F.: A study on rotation invariance in differential evolution. Swarm Evolut. Comput. 50, 100436 (2018)

    Google Scholar 

  44. Carboni, B., Lacarbonara, W.: Nonlinear vibration absorber with pinched hysteresis: theory and experiments. J. Eng. Mech. 142(5), 04016023 (2016)

    Google Scholar 

  45. Carboni, B., Lacarbonara, W., Auricchio, F.: Hysteresis of multiconfiguration assemblies of nitinol and steel strands: experiments and phenomenological identification. J. Eng. Mech. 141(3), 04014135 (2014)

    Google Scholar 

  46. Carboni, B., Mancini, C., Lacarbonara, W.: Hysteretic beam model for steel wire ropes hysteresis identification. In: Structural Nonlinear Dynamics and Diagnosis. Springer Proceedings in Physics, vol. 168, pp. 261–282. Springer (2015)

  47. Carboni, B., Lacarbonara, W., Brewick, P.T., Masri, S.F.: Dynamical response identification of a class of nonlinear hysteretic systems. J. Intell. Mater. Syst. Struct. 29(13), 2795–2810 (2018)

    Google Scholar 

  48. Carro-Pérez, I., Sánchez-López, C., González-Hernández, H.: Experimental verification of a memristive neural network. Nonlinear Dyn. 93(4), 1823–1840 (2018)

    Google Scholar 

  49. Chaber, P., Ławryńczuk, M.: Pruning of recurrent neural models: an optimal brain damage approach. Nonlinear Dyn. 92(2), 763–780 (2018)

    Google Scholar 

  50. Chang, C.C., Roschke, P.: Neural network modeling of a magnetorheological damper. J. Intell. Mater. Syst. Struct. 9(9), 755–764 (1998)

    Google Scholar 

  51. Chang, C.C., Zhou, L.: Neural network emulation of inverse dynamics for a magnetorheological damper. J. Struct. Eng. 128(2), 231–239 (2002)

    Google Scholar 

  52. Chang, W.D.: Parameter identification of Rossler’s chaotic system by an evolutionary algorithm. Chaos Solitons Fractals 29(5), 1047–1053 (2006)

    Google Scholar 

  53. Charalampakis, A., Dimou, C.: Identification of Bouc–Wen hysteretic systems using particle swarm optimization. Comput. Struct. 88(21–22), 1197–1205 (2010)

    Google Scholar 

  54. Charalampakis, A., Dimou, C.: Comparison of evolutionary algorithms for the identification of Bouc–Wen hysteretic systems. J. Comput. Civil Eng. 29(3), 04014053 (2013)

    Google Scholar 

  55. Charalampakis, A., Koumousis, V.: Identification of Bouc–Wen hysteretic systems by a hybrid evolutionary algorithm. J. Sound Vib. 314(3–5), 571–585 (2008)

    Google Scholar 

  56. Chassiakos, A., Masri, S.: Modelling unknown structural systems through the use of neural networks. Earthq. Eng. Struct. Dyn. 25(2), 117–128 (1996a)

    Google Scholar 

  57. Chassiakos, A.G., Masri, S.F.: Identification of structural systems by neural networks. Math. Comput. Simul. 40(5–6), 637–656 (1996b)

    Google Scholar 

  58. Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global optimization of multimodal functions. J. Heuristics 6(2), 191–213 (2000)

    MATH  Google Scholar 

  59. Chen, C.M., Hsu, Y.C., Fung, R.F.: System identification of a Scott–Russell amplifying mechanism with offset driven by a piezoelectric actuator. Appl. Math. Model. 36(6), 2788–2802 (2012)

    MathSciNet  MATH  Google Scholar 

  60. Chen, F., Ding, Z., Lu, Z., Zeng, X.: Parameters identification for chaotic systems based on a modified Jaya algorithm. Nonlinear Dyn. 94(4), 2307–2326 (2018)

    Google Scholar 

  61. Chisari, C., Amadio, C.: TOSCA: a tool for optimisation in structural and civil engineering analyses. Int. J. Adv. Struct. Eng. 10(4), 401–419 (2018)

    Google Scholar 

  62. Chisari, C., Francavilla, A.B., Latour, M., Piluso, V., Rizzano, G., Amadio, C.: Critical issues in parameter calibration of cyclic models for steel members. Eng. Struct. 132, 123–138 (2017)

    Google Scholar 

  63. Chisari, C., Rizzano, G., Amadio, C., Galdi, V.: Sensitivity analysis and calibration of phenomenological models for seismic analyses. Soil Dyn. Earthq. Eng. 109, 10–22 (2018)

    Google Scholar 

  64. Choi, T.J., Ahn, C.W., An, J.: An adaptive Cauchy differential evolution algorithm for global numerical optimization. Sci. World J. 2013, 969734 (2013)

    Google Scholar 

  65. Chungui, Z., Xinong, Z., Shilin, X., Tong, Z., Changchun, Z.: Hybrid modeling of wire cable vibration isolation system through neural network. Math. Comput. Simul. 79(10), 3160–3173 (2009)

    MathSciNet  MATH  Google Scholar 

  66. Chwastek, K., Szczyglowski, J.: Identification of a hysteresis model parameters with genetic algorithms. Math. Comput. Simul. 71(3), 206–211 (2006)

    MathSciNet  MATH  Google Scholar 

  67. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1951–1957. IEEE (1999)

  68. Coelho, L.S., Guerra, F.A., Leite, J.V.: Multiobjective exponential particle swarm optimization approach applied to hysteresis parameters estimation. IEEE Trans. Magn. 48(2), 283–286 (2012)

    Google Scholar 

  69. Coley, D.A.: An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific Publishing Company, Singapore (1999)

    Google Scholar 

  70. Consolo, G., Finocchio, G., Carpentieri, M., Azzerboni, B.: Removing numerical instabilities in the Preisach model identification using genetic algorithms. Physica B 372(1–2), 91–96 (2006)

    Google Scholar 

  71. Crawford-Marks, R., Spector, L.: Size control via size fair genetic operators in the PushGP genetic programming system. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, pp. 733–739. Morgan Kaufmann Publishers Inc. (2002)

  72. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989)

    MathSciNet  MATH  Google Scholar 

  73. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Google Scholar 

  74. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution—an updated survey. Swarm Evolut. Comput. 27, 1–30 (2016)

    Google Scholar 

  75. de Paula, N.C.G., Marques, F.D.: Multi-variable Volterra kernels identification using time-delay neural networks: application to unsteady aerodynamic loading. Nonlinear Dyn. 97(1), 767–780 (2019)

    Google Scholar 

  76. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Google Scholar 

  77. Deep, K., Thakur, M.: A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 188(1), 895–911 (2007)

    MathSciNet  MATH  Google Scholar 

  78. Del Ser, J., Osaba, E., Molina, D., Yang, X.S., Salcedo-Sanz, S., Camacho, D., Das, S., Suganthan, P.N., Coello, C.A.C., Herrera, F.: Bio-inspired computation: where we stand and what’s next. Swarm Evolut. Comput. 48, 220–250 (2019)

    Google Scholar 

  79. Derkevorkian, A., Masri, S.F., Fujino, Y., Siringoringo, D.M.: Development and validation of nonlinear computational models of dispersed structures under strong earthquake excitation. Earthq. Eng. Struct. Dyn. 43(7), 1089–1105 (2014)

    Google Scholar 

  80. Derkevorkian, A., Hernandez-Garcia, M., Yun, H.B., Masri, S.F., Li, P.: Nonlinear data-driven computational models for response prediction and change detection. Struct. Control Health Monit. 22(2), 273–288 (2015)

    Google Scholar 

  81. Dewhirst, O., Simpson, D., Angarita, N., Allen, R.: Wiener-Hammerstein parameter estimation using differential evolution: application to limb reflex dynamics. In: International Conference on Bio-inspired Systems and Signal Processing, pp. 271–276 (2010)

  82. Do, T., Tjahjowidodo, T., Lau, M.W.S., Phee, S.J.: A new approach of friction model for tendon-sheath actuated surgical systems: nonlinear modelling and parameter identification. Mech. Mach. Theory 85, 14–24 (2015)

    Google Scholar 

  83. dos Santos, C.L.: A quantum particle swarm optimizer with chaotic mutation operator. Chaos Solitons Fractals 37(5), 1409–1418 (2008)

    Google Scholar 

  84. dos Santos, C.L., Herrera, B.M.: Fuzzy identification based on a chaotic particle swarm optimization approach applied to a nonlinear yo–yo motion system. IEEE Trans. Ind. Electron. 54(6), 3234–3245 (2007)

    Google Scholar 

  85. dos Santos, C.L., Pessôa, M.W.: Nonlinear identification using a B-spline neural network and chaotic immune approaches. Mech. Syst. Signal Process. 23(8), 2418–2434 (2009a)

    Google Scholar 

  86. dos Santos, C.L., Pessôa, M.W.: Nonlinear model identification of an experimental ball-and-tube system using a genetic programming approach. Mech. Syst. Signal Process. 23(5), 1434–1446 (2009b)

    Google Scholar 

  87. dos Santos, C.L., Mariani, V.C., Leite, J.V.: Solution of Jiles–Atherton vector hysteresis parameters estimation by modified differential evolution approaches. Expert Syst. Appl. 39(2), 2021–2025 (2012)

    Google Scholar 

  88. Doglioni, A., Mancarella, D., Simeone, V., Giustolisi, O.: Inferring groundwater system dynamics from hydrological time-series data. Hydrol. Sci. J. Sci. Hydrol. 55(4), 593–608 (2010)

    Google Scholar 

  89. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)

    Google Scholar 

  90. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Google Scholar 

  91. Dotoli, M., Maione, G., Naso, D., Turchiano, B.: Genetic identification of dynamical systems with static nonlinearities. In: SMCia/01. Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applications (Cat. No. 01EX504), pp. 65–70. IEEE (2001)

  92. Dowell, E.H., Epureanu, B.I.: Introduction. Nonlinear Dyn. 39(1), 1–1 (2005)

    MathSciNet  Google Scholar 

  93. Du, W., Miao, Q., Tong, L., Tang, Y.: Identification of fractional-order systems with unknown initial values and structure. Phys. Lett. A 381(23), 1943–1949 (2017)

    MathSciNet  MATH  Google Scholar 

  94. Du, W., Tong, L., Tang, Y.: Metaheuristic optimization-based identification of fractional-order systems under stable distribution noises. Phys. Lett. A 382(34), 2313–2320 (2018)

    MathSciNet  MATH  Google Scholar 

  95. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), vol. 1, pp. 84–88. IEEE (2000)

  96. Ekárt, A., Nemeth, S.Z.: Selection based on the pareto nondomination criterion for controlling code growth in genetic programming. Genet. Program. Evol. Mach. 2(1), 61–73 (2001)

    MATH  Google Scholar 

  97. Elman, J.L.: Finding structure in time. Cognit. Sci. 14(2), 179–211 (1990)

    Google Scholar 

  98. Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley, New York (2007)

    Google Scholar 

  99. Erdbrink, C.D., Krzhizhanovskaya, V.V.: Differential evolution for system identification of self-excited vibrations. J. Comput. Sci. 10, 360–369 (2015)

    Google Scholar 

  100. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: Foundations of Genetic Algorithms, vol. 2, pp. 187–202. Elsevier (1993)

  101. Fiore, A., Mollaioli, F., Quaranta, G., Marano, G.C.: Seismic response prediction of reinforced concrete buildings through nonlinear combinations of intensity measures. Bull. Earthq. Eng. 16(12), 6047–6076 (2018)

    Google Scholar 

  102. Foliente, G.C.: Hysteresis modeling of wood joints and structural systems. J. Struct. Eng. 121(6), 1013–1022 (1995)

    Google Scholar 

  103. Formica, G., Milicchio, F.: Kinship-based differential evolution algorithm for unconstrained numerical optimization. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-05358-y

  104. Formica, G., Talò, M., Lanzara, G., Lacarbonara, W.: Parametric identification of carbon nanotube nanocomposites constitutive response. J. Appl. Mech. 86(4), 041007 (2019)

    Google Scholar 

  105. Fu, J., Liao, G., Yu, M., Li, P., Lai, J.: NARX neural network modeling and robustness analysis of magnetorheological elastomer isolator. Smart Mater. Struct. 25(12), 125019 (2016)

    Google Scholar 

  106. Fulginei, F.R., Salvini, A.: Softcomputing for the identification of the Jiles–Atherton model parameters. IEEE Trans. Magn. 41(3), 1100–1108 (2005)

    Google Scholar 

  107. Fulginei, F.R., Salvini, A.: The flock of starlings optimization: influence of topological rules on the collective behavior of swarm intelligence. In: Computational Methods for the Innovative Design of Electrical Devices, pp. 129–145. Springer (2010)

  108. Fulginei, F.R., Salvini, A.: Neural network approach for modelling hysteretic magnetic materials under distorted excitations. IEEE Trans. Magn. 48(2), 307–310 (2012)

    Google Scholar 

  109. Fung, R.F., Lin, W.C.: System identification of a novel 6-DOF precision positioning table. Sens. Actuat. A 150(2), 286–295 (2009)

    Google Scholar 

  110. Fung, R.F., Hsu, Y.L., Huang, M.S.: System identification of a dual-stage XY precision positioning table. Precis. Eng. 33(1), 71–80 (2009)

    Google Scholar 

  111. Ganjefar, S., Tofighi, M.: Optimization of quantum-inspired neural network using memetic algorithm for function approximation and chaotic time series prediction. Neurocomputing 291, 175–186 (2018)

    Google Scholar 

  112. Gao, F., Lee, J.J., Li, Z., Tong, H., Lü, X.: Parameter estimation for chaotic system with initial random noises by particle swarm optimization. Chaos Solitons Fractals 42(2), 1286–1291 (2009)

    MATH  Google Scholar 

  113. Gao, F., Xj, L., Fx, F., Hq, T., Yb, Q., Yf, D., Balasingham, I., Hl, Z.: Parameter identification for Van der Pol-Duffing oscillator by a novel artificial bee colony algorithm with differential evolution operators. Appl. Math. Comput. 222, 132–144 (2013)

    MathSciNet  Google Scholar 

  114. Gao, F., Fei, F.X., Lee, X.J., Tong, H.Q., Deng, Y.F., Zhao, H.L.: Inversion mechanism with functional extrema model for identification incommensurate and hyper fractional chaos via differential evolution. Expert Syst. Appl. 41(4), 1915–1927 (2014a)

    Google Scholar 

  115. Gao, F., Xj, L., Fx, F., Hq, T., Yf, D., Hl, Z.: Identification time-delayed fractional order chaos with functional extrema model via differential evolution. Expert Syst. Appl. 41(4), 1601–1608 (2014b)

    Google Scholar 

  116. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Comput. 7(2), 219–269 (1995)

    Google Scholar 

  117. Giustolisi, O., Savic, D.: Advances in data-driven analyses and modelling using EPR-MOGA. J. Hydroinform. 11(3–4), 225–236 (2009)

    Google Scholar 

  118. Giustolisi, O., Savic, D.A.: A symbolic data-driven technique based on evolutionary polynomial regression. J. Hydroinform. 8(3), 207–222 (2006)

    Google Scholar 

  119. Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Syst. 5(2), 139–167 (1991)

    MathSciNet  MATH  Google Scholar 

  120. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  121. Gray, G.J., Li, Y., Murray-Smith, D., Sharman, K.: Structural system identification using genetic programming and a block diagram oriented simulation tool. Electron. Lett. 32(15), 1422–1424 (1996)

    Google Scholar 

  122. Gray, G.J., Murray-Smith, D.J., Li, Y., Sharman, K.C., Weinbrenner, T.: Nonlinear model structure identification using genetic programming. Control Eng. Pract. 6(11), 1341–1352 (1998)

    Google Scholar 

  123. Gu, G.Y., Li, C.X., Zhu, L.M., Su, C.Y.: Modeling and identification of piezoelectric-actuated stages cascading hysteresis nonlinearity with linear dynamics. IEEE/ASME Trans. Mechatron. 21(3), 1792–1797 (2016a)

    Google Scholar 

  124. Gu, W., Yu, Y., Hu, W.: Parameter estimation of unknown fractional-order memristor-based chaotic systems by a hybrid artificial bee colony algorithm combined with differential evolution. Nonlinear Dyn. 84(2), 779–795 (2016b)

    MathSciNet  Google Scholar 

  125. Guerra, F.A., Coelho, L.S.: Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization. Chaos Solitons Fractals 35(5), 967–979 (2008)

    MATH  Google Scholar 

  126. Gurney, K.: An Introduction to Neural Networks. UCL Press, London (1997)

    Google Scholar 

  127. Gutiérrez, G., Sanchis, A., Isasi, P., Molina, J.M., Galván, I.M.: Non-direct encoding method based on cellular automata to design neural network architectures. Comput. Inform. 24(3), 225–247 (2012)

    MATH  Google Scholar 

  128. Ha, J.L., Kung, Y.S., Fung, R.F., Hsien, S.C.: A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm. Sens. Actuat. A 132(2), 643–650 (2006)

    Google Scholar 

  129. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)

    Google Scholar 

  130. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)

    Google Scholar 

  131. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley, New York (2004)

    MATH  Google Scholar 

  132. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  133. He, Q., Wang, L., Liu, B.: Parameter estimation for chaotic systems by particle swarm optimization. Chaos Solitons Fractals 34(2), 654–661 (2007)

    MATH  Google Scholar 

  134. He, S., Wu, Q., Wen, J., Saunders, J., Paton, R.: A particle swarm optimizer with passive congregation. Biosystems 78(1–3), 135–147 (2004)

    Google Scholar 

  135. Hergli, K., Marouani, H., Zidi, M., Fouad, Y., Elshazly, M.: Identification of Preisach hysteresis model parameters using genetic algorithms. J. King Saud Univ. Sci. 31(4), 746–752 (2017)

    Google Scholar 

  136. Hergli, K., Marouani, H., Zidi, M.: Numerical determination of Jiles–Atherton hysteresis parameters: magnetic behavior under mechanical deformation. Physica B 549, 74–81 (2018)

    Google Scholar 

  137. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: operators and tools for behavioural analysis. Artif. Intell. Rev. 12(4), 265–319 (1998)

    MATH  Google Scholar 

  138. Hilgert, T., Vandevelde, L., Melkebeek, J.: Neural-network-based model for dynamic hysteresis in the magnetostriction of electrical steel under sinusoidal induction. IEEE Trans. Magn. 43(8), 3462–3466 (2007)

    Google Scholar 

  139. Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61(1–2), 29–41 (2010)

    MathSciNet  MATH  Google Scholar 

  140. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  141. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Michigan University Press, Michigan (1975)

    MATH  Google Scholar 

  142. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)

    MathSciNet  MATH  Google Scholar 

  143. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    MATH  Google Scholar 

  144. Hu, W., Yu, Y., Gu, W.: Parameter estimation of fractional-order arbitrary dimensional hyperchaotic systems via a hybrid adaptive artificial bee colony algorithm with simulated annealing algorithm. Eng. Appl. Artif. Intell. 68, 172–191 (2018)

    Google Scholar 

  145. Hu, W., Wen, G., Rahmani, A., Yu, Y.: Differential evolution-based parameter estimation and synchronization of heterogeneous uncertain nonlinear delayed fractional-order multi-agent systems with unknown leader. Nonlinear Dyn. 97(2), 1087–1105 (2019)

    Google Scholar 

  146. Huang, C.C., Loh, C.H.: Nonlinear identification of dynamic systems using neural networks. Comput. Aided Civil Infrastruct. Eng. 16(1), 28–41 (2001)

    Google Scholar 

  147. Huang, T., Mohan, A.S.: Micro-particle swarm optimizer for solving high dimensional optimization problems (\(\mu \)PSO for high dimensional optimization problems). Appl. Math. Comput. 181(2), 1148–1154 (2006)

    MathSciNet  MATH  Google Scholar 

  148. Huang, V., Qin, A., Suganthan, P.: Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In: IEEE Congress on Evolutionary Computation, pp. 17–24 (2006)

  149. Hung, S.L., Huang, C., Wen, C., Hsu, Y.: Nonparametric identification of a building structure from experimental data using wavelet neural network. Comput. Aided Civil Infrastruct. Eng. 18(5), 356–368 (2003)

    Google Scholar 

  150. Iacca, G., Caraffini, F., Neri, F.: Compact differential evolution light: high performance despite limited memory requirement and modest computational overhead. J. Comput. Sci. Technol. 27(5), 1056–1076 (2012)

    MathSciNet  MATH  Google Scholar 

  151. Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)

    Google Scholar 

  152. Irakoze, R., Yakoub, K., Kaddouri, A.: Identification of piezoelectric LuGre model based on particle swarm optimization and real-coded genetic algorithm. In: 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1451–1457. IEEE (2015)

  153. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 42(2), 482–500 (2012)

    Google Scholar 

  154. Jafari, S., Golpayegani, S.M.R.H., Daliri, A.: Comment on ‘Parameters identification of chaotic systems by quantum-behaved particle swarm optimization’ [Int. J. Comput. Math. 86 (12)(2009), pp. 2225–2235]. Int. J. Comput. Math. 90(5), 903–905 (2013a)

    MathSciNet  MATH  Google Scholar 

  155. Jafari, S., Golpayegani, S.R.H., Darabad, M.R.: Comment on ‘Parameter identification and synchronization of fractional-order chaotic systems’ [Commun. Nonlinear Sci. Numer. Simulat. 2012; 17: 305–16]. Commun. Nonlinear Sci. Numer. Simul. 18(3), 811–814 (2013b)

    MathSciNet  MATH  Google Scholar 

  156. Jafari, S., Sprott, J.C., Pham, V.T., Golpayegani, S.M.R.H., Jafari, A.H.: A new cost function for parameter estimation of chaotic systems using return maps as fingerprints. Int. J. Bifurc. Chaos 24(10), 1450134 (2014)

    MathSciNet  MATH  Google Scholar 

  157. Jia, Z.Y., Liu, H.F., Wang, F.J., Ge, C.Y.: Research on a novel force sensor based on giant magnetostrictive material and its model. J. Alloys Compd. 509(5), 1760–1767 (2011)

    Google Scholar 

  158. Jiang, X., Adeli, H.: Dynamic wavelet neural network for nonlinear identification of highrise buildings. Comput. Aided Civil Infrastruct. Eng. 20(5), 316–330 (2005)

    Google Scholar 

  159. Jiang, Y., Lau, F.C., Wang, S., Tse, C.K.: Parameter identification of chaotic systems by a novel dual particle swarm optimization. Int. J. Bifurc. Chaos 26(02), 1650024 (2016)

    MathSciNet  MATH  Google Scholar 

  160. Jin, X., Shao, J., Zhang, X., An, W., Malekian, R.: Modeling of nonlinear system based on deep learning framework. Nonlinear Dyn. 84(3), 1327–1340 (2016)

    MathSciNet  Google Scholar 

  161. Kadirkamanathan, V., Selvarajah, K., Fleming, P.J.: Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans. Evol. Comput. 10(3), 245–255 (2006)

    Google Scholar 

  162. Kao, C.C., Fung, R.F.: Using the modified PSO method to identify a Scott–Russell mechanism actuated by a piezoelectric element. Mech. Syst. Signal Process. 23(5), 1652–1661 (2009)

    Google Scholar 

  163. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Google Scholar 

  164. Kaveh, A., Talatahari, S.: Size optimization of space trusses using Big Bang–Big Crunch algorithm. Comput. Struct. 87(17–18), 1129–1140 (2009)

    Google Scholar 

  165. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4, 1942–1948 (1995)

    Google Scholar 

  166. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592 (2006)

    Google Scholar 

  167. Khalid, M., Yusof, R., Joshani, M., Selamat, H., Joshani, M.: Nonlinear identification of a magneto-rheological damper based on dynamic neural networks. Comput. Aided Civil Infrastruct. Eng. 29(3), 221–233 (2014)

    Google Scholar 

  168. Ko, Y.R., Hwang, Y., Chae, M., Kim, T.H.: Direct identification of generalized Prandtl–Ishlinskii model inversion for asymmetric hysteresis compensation. ISA Trans. 70, 209–218 (2017)

    Google Scholar 

  169. Kosmatopoulos, E., Smyth, A., Masri, S., Chassiakos, A.: Robust adaptive neural estimation of restoring forces in nonlinear structures. J. Appl. Mech. 68(6), 880–893 (2001)

    MATH  Google Scholar 

  170. Koumousis, V.K., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10(1), 19–28 (2006)

    Google Scholar 

  171. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  172. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization. Intell. Control Adapt. Syst. Int. Soc. Opt. Photon. 1196, 289–297 (1990)

    Google Scholar 

  173. Kwok, N., Ha, Q., Nguyen, M., Li, J., Samali, B.: Bouc–Wen model parameter identification for a MR fluid damper using computationally efficient GA. ISA Trans. 46(2), 167–179 (2007)

    Google Scholar 

  174. Kyprianou, A., Worden, K., Panet, M.: Identification of hysteretic systems using the differential evolution algorithm. J. Sound Vib. 248(2), 289–314 (2001)

    Google Scholar 

  175. La Cava, W., Helmuth, T., Spector, L., Danai, K.: Genetic programming with epigenetic local search. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1055–1062, ACM (2015)

  176. La Cava, W., Danai, K., Spector, L., Fleming, P., Wright, A., Lackner, M.: Automatic identification of wind turbine models using evolutionary multiobjective optimization. Renew. Energy 87, 892–902 (2016)

    Google Scholar 

  177. Lacarbonara, W.: Nonlinear Structural Dynamics. Theory, Modeling, and Dynamical Phenomena. Springer, New York (2013)

    MATH  Google Scholar 

  178. Langdon, W.B., Poli, R., McPhee, N.F., Koza, J.R.: Genetic programming: an introduction and tutorial, with a survey of techniques and applications. In: Fulcher, J., Jain, L.C. (eds.) Computational Intelligence: A Compendium. Studies in Computational Intelligence, vol. 115. Springer, Berlin (2008)

    Google Scholar 

  179. Lanzarini, L., Leza, V., De Giusti, A.: Particle swarm optimization with variable population size. In: International Conference on Artificial Intelligence and Soft Computing, pp. 438–449. Springer, New York (2008)

    Google Scholar 

  180. Laudani, A., Fulginei, F.R., Salvini, A.: Comparative analysis of Bouc–Wen and Jiles–Atherton models under symmetric excitations. Physica B 435, 134–137 (2014a)

    Google Scholar 

  181. Laudani, A., Fulginei, F.R., Salvini, A.: Bouc–Wen hysteresis model identification by the metric-topological evolutionary optimization. IEEE Trans. Magn. 50(2), 621–624 (2014b)

    Google Scholar 

  182. Le Cun, Y., Jackel, L.D., Boser, B., Denker, J.S., Graf, H.P., Guyon, I., Henderson, D., Howard, R.E., Hubbard, W.: Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun. Mag. 27(11), 41–46 (1989)

    Google Scholar 

  183. Leboucher, C., Shin, H.S., Siarry, P., Le Ménec, S., Chelouah, R., Tsourdos, A.: Convergence proof of an enhanced particle swarm optimisation method integrated with evolutionary game theory. Inf. Sci. 346, 389–411 (2016)

    MATH  Google Scholar 

  184. Leite, J., Avila, S., Batistela, N., Carpes, W., Sadowski, N., Kuo-Peng, P., Bastos, J.: Real coded genetic algorithm for Jiles–Atherton model parameters identification. IEEE Trans. Magn. 40(2), 888–891 (2004)

    Google Scholar 

  185. Leng, D., Xu, K., Ma, Y., Liu, G., Sun, L.: Modeling the behaviors of magnetorheological elastomer isolator in shear-compression mixed mode utilizing artificial neural network optimized by fuzzy algorithm (ANNOFA). Smart Mater. Struct. 27(11), 115026 (2018)

    Google Scholar 

  186. Li, C., Zhou, J., Xiao, J., Xiao, H.: Parameters identification of chaotic system by chaotic gravitational search algorithm. Chaos Solitons Fractals 45(4), 539–547 (2012)

    Google Scholar 

  187. Li, H.X.: Identification of Hammerstein models using genetic algorithms. IEE Proc. Control Theory Appl. 146(6), 499–504 (1999)

    Google Scholar 

  188. Li, K., Kou, J., Zhang, W.: Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple mach numbers. Nonlinear Dyn. 96(3), 2157–2177 (2019)

    Google Scholar 

  189. Li, L., Wang, L., Liu, L.: An effective hybrid PSOSA strategy for optimization and its application to parameter estimation. Appl. Math. Comput. 179(1), 135–146 (2006)

    MathSciNet  MATH  Google Scholar 

  190. Li, P., Xiao, H., Shang, F., Tong, X., Li, X., Cao, M.: A hybrid quantum-inspired neural networks with sequence inputs. Neurocomputing 117, 81–90 (2013)

    Google Scholar 

  191. Li, X., Yin, M.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn. 77(1–2), 61–71 (2014)

    MathSciNet  Google Scholar 

  192. Li, X., Fc, L., Liu, X., Guo, Y.: Parameter identification and optimisation for a class of fractional-order chaotic system with time delay. Int. J. Model. Ident. Control 29(2), 153–162 (2018)

    Google Scholar 

  193. Liang, Y., Feng, D., Cooper, J.: Identification of restoring forces in non-linear vibration systems using fuzzy adaptive neural networks. J. Sound Vib. 242(1), 47–58 (2001)

    MATH  Google Scholar 

  194. Liang, Y.C., Zhou, C.G., Wang, Z.S.: Identification of restoring forces in non-linear vibration systems based on neural networks. J. Sound Vib. 206, 103–108 (1997)

    Google Scholar 

  195. Lin, C.J., Yau, H.T., Lee, C.Y., Tung, K.H.: System identification and semiactive control of a squeeze-mode magnetorheological damper. IEEE/ASME Trans. Mechatron. 18(6), 1691–1701 (2013)

    Google Scholar 

  196. Lin, C.J., Lin, C.R., Yu, S.K., Chen, C.T.: Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl–Ishlinskii model. Mechatronics 28, 35–45 (2015)

    Google Scholar 

  197. Lin, J.: Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems. Nonlinear Dyn. 80(1–2), 209–219 (2015)

    MathSciNet  Google Scholar 

  198. Ling, S.H., Leung, F.F.: An improved genetic algorithm with average-bound crossover and wavelet mutation operations. Soft. Comput. 11(1), 7–31 (2007)

    MATH  Google Scholar 

  199. Liu, F., Li, X., Liu, X., Tang, Y.: Parameter identification of fractional-order chaotic system with time delay via multi-selection differential evolution. Syst. Sci. Control Eng. 5(1), 42–48 (2017)

    Google Scholar 

  200. Liu, J.: On setting the control parameter of the differential evolution method. In: Proceedings of the 8th International Conference on Soft Computing, pp. 11–18 (2002)

  201. Liu, J., Xu, W., Sun, J.: Quantum-behaved particle swarm optimization with mutation operator. In: 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’05), p. 4. IEEE (2005)

  202. Liu, J., Xu, W., Sun, J.: Nonlinear system identification of Hammerstien and Wiener model using swarm intelligence. In: 2006 IEEE International Conference on Information Acquisition, pp. 1219–1223. IEEE (2006)

  203. Liu, Y., Yang, S., Liao, Y.: A quantizing method for determination of controlled damping parameters of magnetorheological damper models. J. Intell. Mater. Syst. Struct. 22(18), 2127–2136 (2011)

    Google Scholar 

  204. Liu, Y., Gao, X., Li, Y.: Giant magnetostrictive actuator nonlinear dynamic Jiles–Atherton model. Sens. Actuat. A 250, 7–14 (2016)

    Google Scholar 

  205. Long, Z., Wang, R., Fang, J., Dai, X., Li, Z.: Hysteresis compensation of the Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm optimization with chaotic map. Rev. Sci. Instrum. 88(7), 075003 (2017)

    Google Scholar 

  206. Lu, H., Wen, X., Lan, L., An, Y., Li, X.: A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops. J. Magn. Magn. Mater. 374, 502–507 (2015)

    Google Scholar 

  207. Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Comput. 4(3), 274–283 (2000)

    Google Scholar 

  208. Luke, S., Balan, G.C., Panait, L.: Population implosion in genetic programming. In: Genetic and Evolutionary Computation Conference, pp. 1729–1739. Springer (2003)

  209. Ma, F., Ng, C., Ajavakom, N.: On system identification and response prediction of degrading structures. Struct. Control Health Monit. 13(1), 347–364 (2006)

    Google Scholar 

  210. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58(12), 2038–2045 (2015)

    Google Scholar 

  211. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  212. Ma, J., Zq, Y., Lj, Y., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20(9), 639–659 (2019)

    Google Scholar 

  213. Ma, L., Khorasani, K.: New training strategies for constructive neural networks with application to regression problems. Neural Netw. 17(4), 589–609 (2004)

    Google Scholar 

  214. Mannarino, A., Mantegazza, P.: Nonlinear aeroelastic reduced order modeling by recurrent neural networks. J. Fluids Struct. 48, 103–121 (2014)

    Google Scholar 

  215. Marano, G.C., Quaranta, G.: Fuzzy-based robust structural optimization. Int. J. Solids Struct. 45(11–12), 3544–3557 (2008)

    MATH  Google Scholar 

  216. Marano, G.C., Quaranta, G., Greco, R.: Multi-objective optimization by genetic algorithm of structural systems subject to random vibrations. Struct. Multidiscip. Optim. 39(4), 385–399 (2009a)

    Google Scholar 

  217. Marano, G.C., Quaranta, G., Monti, G.: Genetic algorithms in mechanical systems identification: state-of-the-art review. In: Topping, B., Tsompanakis, Y. (eds.) Soft Computing in Civil and Structural Engineering, vol. 2, pp. 43–72. Saxe-Coburg Publications, Stirlingshire (2009b)

    Google Scholar 

  218. Marano, G.C., Quaranta, G., Monti, G.: Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements. Comput. Aided Civil Infrastruct. Eng. 26(2), 92–110 (2011)

    Google Scholar 

  219. Marion, R., Scorretti, R., Siauve, N., Raulet, M.A., Krahenbuhl, L.: Identification of Jiles–Atherton model parameters using particle swarm optimization. IEEE Trans. Magn. 44(6), 894–897 (2008)

    Google Scholar 

  220. Maruta, I., Kim, T.H., Song, D., Sugie, T.: Synthesis of fixed-structure robust controllers using a constrained particle swarm optimizer with cyclic neighborhood topology. Expert Syst. Appl. 40(9), 3595–3605 (2013)

    Google Scholar 

  221. Masri, S., Bekey, G., Safford, F.: A global optimization algorithm using adaptive random search. Appl. Math. Comput. 7(4), 353–375 (1980)

    MathSciNet  MATH  Google Scholar 

  222. Masri, S., Chassiakos, A., Caughey, T.: Structure-unknown non-linear dynamic systems: identification through neural networks. Smart Mater. Struct. 1(1), 45 (1992)

    Google Scholar 

  223. Masri, S., Chassiakos, A., Caughey, T.: Identification of nonlinear dynamic systems using neural networks. J. Appl. Mech. 60(1), 123–133 (1993)

    Google Scholar 

  224. Masri, S., Smyth, A., Chassiakos, A., Nakamura, M., Caughey, T.: Training neural networks by adaptive random search techniques. J. Eng. Mech. 125(2), 123–132 (1999)

    Google Scholar 

  225. Masri, S., Smyth, A., Chassiakos, A., Caughey, T., Hunter, N.: Application of neural networks for detection of changes in nonlinear systems. J. Eng. Mech. 126(7), 666–676 (2000)

    Google Scholar 

  226. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    MathSciNet  MATH  Google Scholar 

  227. Mehmood, A., Aslam, M.S., Chaudhary, N.I., Zameer, A., Raja, M.A.Z.: Parameter estimation for hammerstein control autoregressive systems using differential evolution. SIViP 12(8), 1603–1610 (2018)

    Google Scholar 

  228. Mehmood, A., Chaudhary, N.I., Zameer, A., Raja, M.A.Z.: Novel computing paradigms for parameter estimation in Hammerstein controlled auto regressive auto regressive moving average systems. Appl. Soft Comput. 80, 263–284 (2019)

    Google Scholar 

  229. Mininno, E., Cupertino, F., Naso, D.: Real-valued compact genetic algorithms for embedded microcontroller optimization. IEEE Trans. Evol. Comput. 12(2), 203–219 (2008)

    Google Scholar 

  230. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution. IEEE Trans. Evol. Comput. 15(1), 32–54 (2010)

    Google Scholar 

  231. Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012)

    MathSciNet  MATH  Google Scholar 

  232. Mitchell, M.: An Introduction to Genetic Algorithms. MIT press (1998)

  233. Modares, H., Alfi, A., Fateh, M.M.: Parameter identification of chaotic dynamic systems through an improved particle swarm optimization. Expert Syst. Appl. 37(5), 3714–3720 (2010)

    Google Scholar 

  234. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, vol.1, pp. 762–767 (1989)

  235. Monti, G., Quaranta, G., Marano, G.C.: Genetic-algorithm-based strategies for dynamic identification of nonlinear systems with noise-corrupted response. J. Comput. Civil Eng. 24(2), 173–187 (2009)

    Google Scholar 

  236. Muller, S.D., Marchetto, J., Airaghi, S., Kournoutsakos, P.: Optimization based on bacterial chemotaxis. IEEE Trans. Evol. Comput. 6(1), 16–29 (2002)

    Google Scholar 

  237. Murray, A.F., Edwards, P.J.: Enhanced MLP performance and fault tolerance resulting from synaptic weight noise during training. IEEE Trans. Neural Netw. 5(5), 792–802 (1994)

    Google Scholar 

  238. Mechanical Systems and Signal Processing. Document guidelines for machine learning papers in MSSP. https://www.journals.elsevier.com/mechanical-systems-and-signal-processing (2019). Accessed 28 July 2019

  239. Naitali, A., Giri, F.: Wiener–Hammerstein system identification—an evolutionary approach. Int. J. Syst. Sci. 47(1), 45–61 (2016)

    MathSciNet  MATH  Google Scholar 

  240. Nam, D.N.C., Ahn, K.K.: Identification of an ionic polymer metal composite actuator employing Preisach type fuzzy NARX model and particle swarm optimization. Sens. Actuat. A 183, 105–114 (2012)

    Google Scholar 

  241. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

    Google Scholar 

  242. Nayfeh, A.H., Pai, F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)

    MATH  Google Scholar 

  243. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evolut. Comput. 2, 1–14 (2012)

    Google Scholar 

  244. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental analysis. Artif. Intell. Rev. 33(1–2), 61–106 (2010)

    Google Scholar 

  245. Neri, F., Mininno, E., Iacca, G.: Compact particle swarm optimization. Inf. Sci. 239, 96–121 (2013)

    MathSciNet  MATH  Google Scholar 

  246. Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Google Scholar 

  247. Ojha, V.K., Abraham, A., Snášel, V.: Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017)

    Google Scholar 

  248. Ong, P., Zainuddin, Z.: Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction. Appl. Soft Comput. 80, 374–386 (2019)

    Google Scholar 

  249. Opara, K.R., Arabas, J.: Differential evolution: a survey of theoretical analyses. Swarm Evolut. Comput. 44, 546–558 (2019)

    Google Scholar 

  250. Ortiz, G.A., Alvarez, D.A., Bedoya-RuíZ, D.: Identification of Bouc–Wen type models using multi-objective optimization algorithms. Comput. Struct. 114, 121–132 (2013)

    Google Scholar 

  251. Panahi, S., Jafari, S., Pham, V.T., Kingni, S.T., Zahedi, A., Sedighy, S.H.: Parameter identification of a chaotic circuit with a hidden attractor using Krill herd optimization. Int. J. Bifurc. Chaos 26(13), 1650221 (2016)

    MathSciNet  MATH  Google Scholar 

  252. Pang, H., Zhang, X., Xu, Z.: Adaptive backstepping-based tracking control design for nonlinear active suspension system with parameter uncertainties and safety constraints. ISA Trans. (2018)

  253. Paquali, M., Lacarbonara, W.: A geometrically exact formulation for thin multi-layered laminated composite plates: theory and experiment. Compos. Struct. 93, 1649–1663 (2011)

    Google Scholar 

  254. Pei, J.S., Smyth, A.W.: New approach to designing multilayer feedforward neural network architecture for modeling nonlinear restoring forces. I: Formulation. J. Eng. Mech. 132(12), 1290–1300 (2006a)

    Google Scholar 

  255. Pei, J.S., Smyth, A.W.: New approach to designing multilayer feedforward neural network architecture for modeling nonlinear restoring forces. II: Applications. J. Eng. Mech. 132(12), 1301–1312 (2006b)

    Google Scholar 

  256. Pei, J.S., Smyth, A., Kosmatopoulos, E.: Analysis and modification of volterra/wiener neural networks for the adaptive identification of non-linear hysteretic dynamic systems. J. Sound Vib. 275(3–5), 693–718 (2004)

    Google Scholar 

  257. Pei, J.S., Wright, J.P., Smyth, A.W.: Mapping polynomial fitting into feedforward neural networks for modeling nonlinear dynamic systems and beyond. Comput. Methods Appl. Mech. Eng. 194(42–44), 4481–4505 (2005)

    MathSciNet  MATH  Google Scholar 

  258. Pei, J.S., Carboni, B., Lacarbonara, W.: Mem-models as building blocks for simulation and identification of hysteretic systems. In: Book of Abstracts of the 1st International Nonlinear Dynamics Conference, pp. 325–327 (2019)

  259. Pelliciari, M., Marano, G.C., Cuoghi, T., Briseghella, B., Lavorato, D., Tarantino, A.M.: Parameter identification of degrading and pinched hysteretic systems using a modified Bouc–Wen model. Struct. Infrastruct. Eng. 14(12), 1573–1585 (2018)

    Google Scholar 

  260. Peng, B., Liu, B., Zhang, F.Y., Wang, L.: Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos Solitons Fractals 39(5), 2110–2118 (2009)

    Google Scholar 

  261. Perisic, N., Green, P.L., Worden, K., Kirkegaard, P.H.: Identification of time-varying nonlinear systems using differential evolution algorithm. In: Topics in Modal Analysis, vol. 7, pp. 575–583. Springer (2014)

  262. Perry, M., Koh, C., Choo, Y.: Modified genetic algorithm strategy for structural identification. Comput. Struct. 84(8–9), 529–540 (2006)

    Google Scholar 

  263. Pham, D.T., Liu, X.: Identification of linear and nonlinear dynamic systems using recurrent neural networks. Artif. Intell. Eng. 8(1), 67–75 (1993)

    Google Scholar 

  264. Piotrowski, A.P.: Differential evolution algorithms applied to neural network training suffer from stagnation. Appl. Soft Comput. 21, 382–406 (2014)

    Google Scholar 

  265. Pitts, W., McCulloch, W.S.: How we know universals the perception of auditory and visual forms. Bull. Math. Biophy. 9(3), 127–147 (1947)

    Google Scholar 

  266. Poli, R.: New Ideas in Optimization. Parallel Distributed Genetic Programming, pp. 403–432. McGraw-Hill Ltd., Maidenhead (1999)

    Google Scholar 

  267. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: European Conference on Genetic Programming, pp. 204–217. Springer, New York (2003)

    MATH  Google Scholar 

  268. Poli, R., Vanneschi, L., Langdon, W.B., McPhee, N.F.: Theoretical results in genetic programming: the next ten years? Genet. Program. Evol. Mach. 11(3–4), 285–320 (2010)

    Google Scholar 

  269. Prawin, J., Rao, A.R.M., Lakshmi, K.: Nonlinear parametric identification strategy combining reverse path and hybrid dynamic quantum particle swarm optimization. Nonlinear Dyn. 84(2), 797–815 (2016)

    MathSciNet  Google Scholar 

  270. Prechelt, L.: Automatic early stopping using cross validation: quantifying the criteria. Neural Netw. 11(4), 761–767 (1998)

    Google Scholar 

  271. Qin, H., Bu, N., Chen, W., Yin, Z.: An asymmetric hysteresis model and parameter identification method for piezoelectric actuator. Mathem. Probl. Eng. (2014)

  272. Quaranta, G., Monti, G., Marano, G.C.: Parameters identification of Van der Pol–Duffing oscillators via particle swarm optimization and differential evolution. Mech. Syst. Signal Process. 24(7), 2076–2095 (2010)

    Google Scholar 

  273. Quaranta, G., Fiore, A., Marano, G.C.: Optimum design of prestressed concrete beams using constrained differential evolution algorithm. Struct. Multidiscip. Optim. 49(3), 441–453 (2014a)

    Google Scholar 

  274. Quaranta, G., Marano, G.C., Greco, R., Monti, G.: Parametric identification of seismic isolators using differential evolution and particle swarm optimization. Appl. Soft Comput. 22, 458–464 (2014b)

    Google Scholar 

  275. Rahman, M.A., Mamun, A.A., Yao, K.: Analysis and compensation of hysteresis of PZT micro-actuator used in high precision dual-stage servo system. Int. J. Mechatron. Autom. 5(1), 58–68 (2015)

    Google Scholar 

  276. Raja, M.A.Z., Shah, A.A., Mehmood, A., Chaudhary, N.I., Aslam, M.S.: Bio-inspired computational heuristics for parameter estimation of nonlinear hammerstein controlled autoregressive system. Neural Comput. Appl. 29(12), 1455–1474 (2018)

    Google Scholar 

  277. Rao, R.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)

    Google Scholar 

  278. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Google Scholar 

  279. Rodríguez-Vázquez, K., Fleming, P.J.: Evolution of mathematical models of chaotic systems based on multiobjective genetic programming. Knowl. Inf. Syst. 8(2), 235–256 (2005)

    Google Scholar 

  280. Rodriguez-Vazquez, K., Fonseca, C.M., Fleming, P.J.: Identifying the structure of nonlinear dynamic systems using multiobjective genetic programming. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 34(4), 531–545 (2004)

    Google Scholar 

  281. Rojas, I., Pomares, H., Bernier, J.L., Ortega, J., Pino, B., Pelayo, F.J., Prieto, A.: Time series analysis using normalized PG-RBF network with regression weights. Neurocomputing 42(1–4), 267–285 (2002)

    MATH  Google Scholar 

  282. Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Berlin (1996)

    MATH  Google Scholar 

  283. Rubio-Solis, A., Melin, P., Martinez-Hernandez, U., Panoutsos, G.: General type-2 radial basis function neural network: a data-driven fuzzy model. IEEE Trans. Fuzzy Syst. 27(2), 333–347 (2018)

    Google Scholar 

  284. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  285. Rumelhart, D.E., Hintonf, G.E.: Learning representations by back-propagating errors. Nature 323, 9 (1986)

    Google Scholar 

  286. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia (2016)

    MATH  Google Scholar 

  287. Salehinejad, H., Rahnamayan, S., Tizhoosh, H.R.: Micro-differential evolution: diversity enhancement and a comparative study. Appl. Soft Comput. 52, 812–833 (2017)

    Google Scholar 

  288. Saliah, H., Lowther, D., Forghani, B.: A neural network model of magnetic hysteresis for computational magnetics. IEEE Trans. Magn. 33(5), 4146–4148 (1997)

    Google Scholar 

  289. Sarban, R., Oubaek, J., Kristjánsdóttir, G.R., Jones, R.W.: Hysteresis modelling of a core-free EAP tubular actuator. In: International Society for Optics and Photonics on Electroactive Polymer Actuators and Devices (EAPAD), vol. 7287, p. 728717 (2009)

  290. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Google Scholar 

  291. Schmidt, M., Lipson, H.: Age-fitness pareto optimization. In: Genetic Programming Theory and Practice VIII, pp. 129–146. Springer, New York (2011)

    Google Scholar 

  292. Schmitt, L.M.: Theory of genetic algorithms. Theoret. Comput. Sci. 259(1–2), 1–61 (2001)

    MathSciNet  MATH  Google Scholar 

  293. Schmitt, L.M.: Theory of genetic algorithms II: models for genetic operators over the string-tensor representation of populations and convergence to global optima for arbitrary fitness function under scaling. Theoret. Comput. Sci. 310(1–3), 181–231 (2004)

    MathSciNet  MATH  Google Scholar 

  294. Scodeggio, A., Quaranta, G., Marano, G.C., Monti, G., Fleischman, R.B.: Optimization of force-limiting seismic devices connecting structural subsystems. Comput. Struct. 162, 16–27 (2016)

    Google Scholar 

  295. Sengupta, P., Li, B.: Modified Bouc–Wen model for hysteresis behavior of RC beam-column joints with limited transverse reinforcement. Eng. Struct. 46, 392–406 (2013)

    Google Scholar 

  296. Sengupta, S., Basak, S., Peters, R.: Particle swarm optimization: a survey of historical and recent developments with hybridization perspectives. Mach. Learn. Knowl. Extract. 1(1), 157–191 (2018)

    Google Scholar 

  297. Serpico, C., Visone, C.: Magnetic hysteresis modeling via feed-forward neural networks. IEEE Trans. Magn. 34(3), 623–628 (1998)

    Google Scholar 

  298. Sexton, R.S., Dorsey, R.E., Johnson, J.D.: Beyond backpropagation: using simulated annealing for training neural networks. J. Organ. End User Comput. 11(3), 3–10 (1999)

    Google Scholar 

  299. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 69–73. IEEE (1998)

  300. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1945–1950. IEEE (1999)

  301. Shu, G., Li, Z.: Parametric identification of the Bouc–Wen model by a modified genetic algorithm: application to evaluation of metallic dampers. Earthq. Struct. 13(4), 397–407 (2017)

    Google Scholar 

  302. Siddique, N., Adeli, H.: Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing. Wiley, New York (2013)

    Google Scholar 

  303. Sireteanu, T., Giuclea, M., Mitu, A.: Identification of an extended Bouc–Wen model with application to seismic protection through hysteretic devices. Comput. Mech. 45(5), 431–441 (2010)

    MATH  Google Scholar 

  304. Sivanandam, S., Deepa, S.: Introduction to Genetic Algorithms. Springer, New York (2007)

    MATH  Google Scholar 

  305. Sivaselvan, M.V., Reinhorn, A.M.: Hysteretic models for deteriorating inelastic structures. J. Eng. Mech. 126(6), 633–640 (2000)

    Google Scholar 

  306. Smith, J.F., Nguyen, T.H.: Guiding genetic program based data mining using fuzzy rules. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 1337–1345. Springer, New York (2006)

    Google Scholar 

  307. Song, G., Chaudhry, V., Batur, C.: A neural network inverse model for a shape memory alloy wire actuator. J. Intell. Mater. Syst. Struct. 14(6), 371–377 (2003)

    Google Scholar 

  308. Sörensen, K.: Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)

    MathSciNet  MATH  Google Scholar 

  309. Stevanović, N., Green, P.L., Worden, K., Kirkegaard, P.H.: Friction estimation in wind turbine blade bearings. Struct. Control Health Monit. 23(1), 103–122 (2016)

    Google Scholar 

  310. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    MathSciNet  MATH  Google Scholar 

  311. Sun, J., Liu, X.: A novel APSO-aided maximum likelihood identification method for Hammerstein systems. Nonlinear Dyn. 73(1–2), 449–462 (2013)

    MathSciNet  MATH  Google Scholar 

  312. Sun, J., Zhao, J., Wu, X., Fang, W., Cai, Y., Xu, W.: Parameter estimation for chaotic systems with a drift particle swarm optimization method. Phys. Lett. A 374(28), 2816–2822 (2010)

    MATH  Google Scholar 

  313. Szabó, Z., Füzi, J.: Implementation and identification of Preisach type hysteresis models with Everett function in closed form. J. Magn. Magn. Mater. 406, 251–258 (2016)

    Google Scholar 

  314. Talatahari, S., Rahbari, N.M., Kaveh, A.: A new hybrid optimization algorithm for recognition of hysteretic non-linear systems. KSCE J. Civil Eng. 17(5), 1099–1108 (2013)

    Google Scholar 

  315. Tang, Y., Zhang, X., Hua, C., Li, L., Yang, Y.: Parameter identification of commensurate fractional-order chaotic system via differential evolution. Phys. Lett. A 376(4), 457–464 (2012)

    MATH  Google Scholar 

  316. Toman, M., Stumberger, G., Dolinar, D.: Parameter identification of the Jiles–Atherton hysteresis model using differential evolution. IEEE Trans. Magn. 44(6), 1098–1101 (2008)

    Google Scholar 

  317. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    MathSciNet  MATH  Google Scholar 

  318. Truong, B.N.M., Nam, D.N.C., Ahn, K.K.: Hysteresis modeling and identification of a dielectric electro-active polymer actuator using an APSO-based nonlinear Preisach NARX fuzzy model. Smart Mater. Struct. 22(9), 095004 (2013)

    Google Scholar 

  319. Tsai, J.T., Chou, J.H., Liu, T.K.: Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans. Neural Netw. 17(1), 69–80 (2006)

    Google Scholar 

  320. Tudón-Martínez, J., Lozoya-Santos, J.J., Morales-Menendez, R., Ramirez-Mendoza, R.: An experimental artificial-neural-network-based modeling of magneto-rheological fluid dampers. Smart Mater. Struct. 21(8), 085007 (2012)

    Google Scholar 

  321. Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P., Koumoutsakos, P.: Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2213), 20170844 (2018)

    MathSciNet  MATH  Google Scholar 

  322. Wang, C., Xiong, L., Sun, J., Yao, W.: Memristor-based neural networks with weight simultaneous perturbation training. Nonlinear Dyn. 95(4), 2893–2906 (2019a)

    Google Scholar 

  323. Wang, D., Liao, W.: Modeling and control of magnetorheological fluid dampers using neural networks. Smart Mater. Struct. 14(1), 111 (2004)

    Google Scholar 

  324. Wang, G., Chen, G., Bai, F.: Modeling and identification of asymmetric Bouc–Wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm. Sens. Actuat. A 235, 105–118 (2015)

    Google Scholar 

  325. Wang, H., Rahnamayan, S., Wu, Z.: Adaptive differential evolution with variable population size for solving high-dimensional problems. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 2626–2632. IEEE (2011a)

  326. Wang, L., Xu, Y., Li, L.: Parameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithm. Expert Syst. Appl. 38(4), 3238–3245 (2011b)

    Google Scholar 

  327. Wang, Q., Zheng, Y., Ma, J.: Cooperative dynamics in neuronal networks. Chaos Solitons Fractals 56, 19–27 (2013)

    Google Scholar 

  328. Wang, R., Kalnay, E., Balachandran, B.: Neural machine-based forecasting of chaotic dynamics. Nonlinear Dyn. (2019b). https://doi.org/10.1007/s11071-019-05127-x

    Google Scholar 

  329. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011c)

    Google Scholar 

  330. Wei, J., Yu, Y., Cai, D.: Identification of uncertain incommensurate fractional-order chaotic systems using an improved quantum-behaved particle swarm optimization algorithm. J. Comput. Nonlinear Dyn. 13(5), 051004 (2018)

    Google Scholar 

  331. Wenjing, Z.: Parameter identification of LuGre friction model in servo system based on improved particle swarm optimization algorithm. In: 2007 Chinese Control Conference, pp. 135–139. IEEE (2007)

  332. Whittle, P.: A stochastic model of an artificial neuron. Adv. Appl. Probab. 23(4), 809–822 (1991)

    MathSciNet  MATH  Google Scholar 

  333. Wilson, P.R., Ross, J.N., Brown, A.D.: Optimizing the Jiles–Atherton model of hysteresis by a genetic algorithm. IEEE Trans. Magn. 37(2), 989–993 (2001)

    Google Scholar 

  334. Worden, K., Manson, G.: On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification. Mech. Syst. Signal Process. 29, 201–212 (2012)

    Google Scholar 

  335. Worden, K., Tomlinson, G.: Modeling and classification of non-linear systems using neural networks-I. Simul. Mech. Syst. Signal Process. 8(3), 319–356 (1994)

    Google Scholar 

  336. Worden, K., Staszewski, W.J., Hensman, J.J.: Natural computing for mechanical systems research: a tutorial overview. Mech. Syst. Signal Process. 25(1), 4–111 (2011)

    Google Scholar 

  337. Worden, K., Barthorpe, R., Cross, E., Dervilis, N., Holmes, G., Manson, G., Rogers, T.: On evolutionary system identification with applications to nonlinear benchmarks. Mech. Syst. Signal Process. 112, 194–232 (2018)

    Google Scholar 

  338. Wu, G., Shen, X., Li, H., Chen, H., Lin, A., Suganthan, P.N.: Ensemble of differential evolution variants. Inf. Sci. 423, 172–186 (2018)

    MathSciNet  Google Scholar 

  339. Wu, T., Kareem, A.: Modeling hysteretic nonlinear behavior of bridge aerodynamics via cellular automata nested neural network. J. Wind Eng. Ind. Aerodyn. 99(4), 378–388 (2011)

    Google Scholar 

  340. Xiaomin, X., Qing, S., Ling, Z., Bin, Z.: Parameter estimation and its sensitivity analysis of the MR damper hysteresis model using a modified genetic algorithm. J. Intell. Mater. Syst. Struct. 20(17), 2089–2100 (2009)

    Google Scholar 

  341. Xie, Y., Fu, J.L., Chen, B.Y.: Parameter identification of hysteresis nonlinear dynamic model for piezoelectric positioning system based on the improved particle swarm optimization method. Adv. Mech. Eng. 9(6), 1687814017702813 (2017)

    Google Scholar 

  342. Xu, G., Yu, G.: On convergence analysis of particle swarm optimization algorithm. J. Comput. Appl. Math. 333, 65–73 (2018)

    MathSciNet  MATH  Google Scholar 

  343. Yam, J.Y., Chow, T.W.: Feedforward networks training speed enhancement by optimal initialization of the synaptic coefficients. IEEE Trans. Neural Netw. 12(2), 430–434 (2001)

    Google Scholar 

  344. Yang, K., Maginu, K., Nomura, H.: Parameters identification of chaotic systems by quantum-behaved particle swarm optimization. Int. J. Comput. Math. 86(12), 2225–2235 (2009)

    MathSciNet  MATH  Google Scholar 

  345. Yang, M.J., Gu, G.Y., Zhu, L.M.: Parameter identification of the generalized Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm optimization. Sens. Actuat. A 189, 254–265 (2013)

    Google Scholar 

  346. Yang, X.S., He, X.S.: Mathematical Foundations of Nature-Inspired Algorithms. Springer, New York (2019)

    MATH  Google Scholar 

  347. Yang, Y., Yang, B., Niu, M.: Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller. Nonlinear Dyn. 92(3), 1109–1118 (2018)

    Google Scholar 

  348. Ye, M., Wang, X.: Parameter estimation of the Bouc–Wen hysteresis model using particle swarm optimization. Smart Mater. Struct. 16(6), 2341 (2007)

    Google Scholar 

  349. Yildiz, Y.E., Topal, A.O.: Large scale continuous global optimization based on micro differential evolution with local directional search. Inf. Sci. 477, 533–544 (2019)

    MathSciNet  Google Scholar 

  350. Yousri, D., AbdelAty, A.M., Said, L.A., Elwakil, A., Maundy, B., Radwan, A.G.: Parameter identification of fractional-order chaotic systems using different meta-heuristic optimization algorithms. Nonlinear Dyn. 95(3), 2491–2542 (2019)

    Google Scholar 

  351. Yu, Y., Li, Y., Li, J.: Nonparametric modeling of magnetorheological elastomer base isolator based on artificial neural network optimized by ant colony algorithm. J. Intell. Mater. Syst. Struct. 26(14), 1789–1798 (2015a)

    Google Scholar 

  352. Yu, Y., Li, Y., Li, J.: Parameter identification of a novel strain stiffening model for magnetorheological elastomer base isolator utilizing enhanced particle swarm optimization. J. Intell. Mater. Syst. Struct. 26(18), 2446–2462 (2015b)

    Google Scholar 

  353. Yuan, L., Yang, Q., Zeng, C.: Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dyn. 73(1–2), 439–448 (2013)

    MathSciNet  MATH  Google Scholar 

  354. Yuan, L.G., Yang, Q.G.: Parameter identification and synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17(1), 305–316 (2012)

    MathSciNet  MATH  Google Scholar 

  355. Yuan, X., Zhang, T., Dai, X., Wu, L.: Master-slave model-based parallel chaos optimization algorithm for parameter identification problems. Nonlinear Dyn. 83(3), 1727–1741 (2016)

    MathSciNet  Google Scholar 

  356. Yun, H.B., Tasbighoo, F., Masri, S.F., Caffrey, J.P., Wolfe, R.W., Makris, N., Black, C.: Comparison of modeling approaches for full-scale nonlinear viscous dampers. J. Vib. Control 14(1–2), 51–76 (2008)

    MATH  Google Scholar 

  357. Zakaria, M.Z., Jamaluddin, H., Ahmad, R., Loghmanian, S.M.: Comparison between multi-objective and single-objective optimization for the modeling of dynamic systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226(7), 994–1005 (2012)

    Google Scholar 

  358. Zaman, M.A., Sikder, U.: Bouc–Wen hysteresis model identification using modified firefly algorithm. J. Magn. Magn. Mater. 395, 229–233 (2015)

    Google Scholar 

  359. Zhang, D., Fletcher, J.E.: Double-frequency method using differential evolution for identifying parameters in the dynamic Jiles–Atherton model of Mn–Zn ferrites. IEEE Trans. Instrum. Meas. 62(2), 460–466 (2013)

    Google Scholar 

  360. Zhang, H., Li, B., Zhang, J., Qin, Y., Feng, X., Liu, B.: Parameter estimation of nonlinear chaotic system by improved TLBO strategy. Soft. Comput. 20(12), 4965–4980 (2016)

    Google Scholar 

  361. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Google Scholar 

  362. Zhang, L., Yang, Y., et al.: Lag synchronization for fractional-order memristive neural networks via period intermittent control. Nonlinear Dyn. 89(1), 367–381 (2017)

    MathSciNet  MATH  Google Scholar 

  363. Zhang, Y., Yan, P.: Modeling, identification and compensation of hysteresis nonlinearity for a piezoelectric nano-manipulator. J. Intell. Mater. Syst. Struct. 28(7), 907–922 (2017)

    Google Scholar 

  364. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. 2015, 931256 (2015)

    MathSciNet  MATH  Google Scholar 

  365. Zheng, J., Cao, S., Wang, H., Huang, W.: Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators. Neurocomputing 70(4–6), 749–761 (2007)

    Google Scholar 

  366. Zheng, J., Cao, S., Wang, H.: Modeling of magnetomechanical effect behaviors in a giant magnetostrictive device under compressive stress. Sens. Actuat. A 143(2), 204–214 (2008)

    Google Scholar 

  367. Zheng, Y.l., Ma, L.H., Zhang, L.Y., Qian, J.X.: Empirical study of particle swarm optimizer with an increasing inertia weight. In: The 2003 Congress on Evolutionary Computation, CEC’03, vol. 1, pp. 221–226. IEEE (2003)

  368. Zhong, J., Hu, X., Zhang, J., Gu, M.: Comparison of performance between different selection strategies on simple genetic algorithms. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 2, pp. 1115–1121. IEEE (2005)

Download references

Acknowledgements

GQ acknowledges the support from Sapienza University of Rome through the project n. RM116154C95F7DD0 titled “Smart solutions for the assessment of structures in seismic areas.” WL acknowledges the partial financial support from the PRIN Grant n. 2017L7X3CS titled “3D Printing: A bridge to the future. Computational methods, innovative applications, experimental validations of new materials and technologies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Quaranta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaranta, G., Lacarbonara, W. & Masri, S.F. A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn 99, 1709–1761 (2020). https://doi.org/10.1007/s11071-019-05430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05430-7

Keywords

Navigation