Skip to main content
Log in

Chaos control in the fractional order logistic map via impulses

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the chaos control in the discrete logistic map of fractional order is obtained with an impulsive control algorithm. The underlying discrete initial value problem of fractional order is considered in terms of Caputo delta fractional difference.Every \(\Delta \) steps, the state variable is instantly modified with the same impulse value, chosen from a bifurcation diagram versus impulse. It is shown that the solution of the impulsive control is bounded. The numerical results are verified via time series, histograms and the 0-1 test. Several examples are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A possible way to extend the range of n in the numerical determination of \(R_q(n)\) in MATLAB, is to use the following relation: \(\mathtt {\Gamma (n-j+q)/\Gamma (n-j+1)=exp(gammaln(n-j+q)-}\)\(\mathtt {gammaln(n-j+q))}\), where \(\mathtt {gammaln}\) is the logarithm of the gamma function.

References

  1. Bonotto, E.M., Bortolan, M.C., Caraballo, T., Collegari, R.: A survey on impulsive dynamical systems. Electron. J. Qual. Theory Differ. Equ. 7, 1–27 (2016)

    MATH  Google Scholar 

  2. Bainov, D.D., Simeonov, P.S.: Systems with Impulsive Effect. Stability, Theory and Applications. Wiley, London (1989)

    Google Scholar 

  3. Bouchard, B., Dang, N.-M., Lehalle, C.-A.: Optimal control of trading algorithms: a general impulse control approach. SIAM J. Financ. Math. 2, 404–438 (2011)

    Article  MathSciNet  Google Scholar 

  4. Davis, M.H.A., Guo, X., Guoliang, W.: Impulse control of multidimensional jump diffu-sions. SIAM J. Control Optim. 48, 5276–5293 (2010)

    Article  MathSciNet  Google Scholar 

  5. Feroe, J.A.: Existence and stability of multiple impulse solutions of a nerve equation. SIAM J. Appl. Math. 42(2), 235–246 (1982)

    Article  MathSciNet  Google Scholar 

  6. Yang, T.: Impulsive Control Theory. Springer, Berlin (2001)

    MATH  Google Scholar 

  7. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, London (2006)

    Book  Google Scholar 

  8. Rožko, V.F.: A certain class of almost periodic motions in systems with pulses. Differencialnye Uravnenija 8, 2012–2022 (1972). (in Russian)

    MathSciNet  MATH  Google Scholar 

  9. Rožko, V.F.: Ljapunov stability in discontinuous dynamic systems. Differencialnye Uravnenija 11, 1005–1012 (1975). (in Russian)

    MathSciNet  Google Scholar 

  10. Kaul, S.K.: On impulsive semidynamical systems. J. Math. Anal. Appl. 150(1), 120–128 (1990)

    Article  MathSciNet  Google Scholar 

  11. Kaul, S.K.: On impulsive semidynamical systems, II. Recursive properties. Nonlinear Anal. 16, 635–645 (1991)

    Article  MathSciNet  Google Scholar 

  12. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  Google Scholar 

  13. Allen, L.J.S., Aulbach, B., Elaydi, S., Sacker, R.: Difference equations and discrete dynamical systems. In: Proceedings of the 9th International Conference, University of Southern California, Los Angeles, California, USA, 2-7 August 2004. October 2005, 336p. Linda J S Allen (Texas Tech University, USA), Bernd Aulbach (University of Augsburg, Germany), Saber Elaydi (Trinity University, USA) and Robert Sacker (University of Southern California, Los Angeles, USA). https://doi.org/10.1142/5957

  14. Fradkov, A.L., Pogromsky, A.Y.: Introduction to Control of Oscillations and Chaos. World Scientific Series on Nonlinear Science Series A, vol. 35. World Scientific, Singapore (1998)

    Book  Google Scholar 

  15. Liz, E.: How to control chaotic behaviour and population size with proportional feedback. Phys. Lett. A 374, 725–728 (2010)

    Article  MathSciNet  Google Scholar 

  16. Matías, M.A., Güémez, J.: Stabilization of chaos by proportional pulses in the system variables. Phys. Rev. Lett. 72(10), 1455–1458 (1994)

    Article  Google Scholar 

  17. Danca, M.-F.: Chaos suppression via periodic change of variables in a class of discontinuous dynamical systems of fractional order. Nonlinear Dyn. 70(1), 815–823 (2012)

    Article  MathSciNet  Google Scholar 

  18. Danca, M.-F., Fečkan, M., Chen, G.: Impulsive stabilization of chaos in fractional-order systems. Nonlinear Dyn. 89(3), 1889–1903 (2017)

    Article  MathSciNet  Google Scholar 

  19. Danca, M.-F., Tang, W., Chen, G.: Suppressing chaos in a simplest autonomous memristor-based circuit of fractional order by periodic impulses. Chaos Soliton Fract. 84, 31–40 (2016)

    Article  MathSciNet  Google Scholar 

  20. Danca, M.-F., Garrappa, R.: Suppressing chaos in discontinuous systems of fractional order by active control. Appl. Math. Comput. 257, 89–102 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Danca, M., Fečkan, M., Pospísil, M.: Difference equations with impulses. Opuscula Mathematica 39(1), 5–22 (2019)

    Article  MathSciNet  Google Scholar 

  22. Tarasov, V.E., Zaslavsky, G.M.: Fractional equations of kicked systems and discrete maps. J. Phys. A 41, 435101 (2008)

    Article  MathSciNet  Google Scholar 

  23. Edelman, M., Tarasov, V.: Fractional standard map. Phys. Lett. A 374(2), 279–285 (2009)

    Article  MathSciNet  Google Scholar 

  24. Xiao, H., Ma, Y., Li, C.: Chaotic vibration in fractional maps. J. Vib. Control 20, 964–72 (2014)

    Article  MathSciNet  Google Scholar 

  25. Wu, G.C., Baleanu, D., Zeng, S.D.: Discrete chaos in fractional sine and standard maps. Phys. Lett. A. 378, 484–487 (2014)

    Article  MathSciNet  Google Scholar 

  26. Wu, G.-C., Baleanu, D.: Stability analysis of impulsive fractional difference equations. Fract. Calc. Appl. Anal. 21(2), 354–375 (2018)

    Article  MathSciNet  Google Scholar 

  27. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  Google Scholar 

  28. Xiao, H., Ma, Y., Li, C.: Chaotic vibration in fractional maps. J. Vib. Control 20(7), 964–972 (2014)

    Article  MathSciNet  Google Scholar 

  29. Golev, A., Hristova, S., Nenov, S.: Monotone-iterative method for solving antiperiodic nonlinear boundary value problems for generalized delay difference equations with maxima. Abstr. Appl. Anal. 2013, 571954 (2013). https://doi.org/10.1155/2013/571954

    Article  MathSciNet  MATH  Google Scholar 

  30. Ruszewski, A.: Practical and asymptotic stability of fractional discrete-time scalar systems described by a new model. Arch. Control Sci. 26(4), 441–452 (2016)

    Article  MathSciNet  Google Scholar 

  31. He, J.-W., Zhang, L., Zhou, Y., Ahmad, B.: Existence of solutions for fractional difference equations via topological degree methods. Adv. Diff. Equ. 2018, 153 (2018). https://doi.org/10.1186/s13662-018-1610-2

    Article  MathSciNet  MATH  Google Scholar 

  32. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Berlin (2015)

    Book  Google Scholar 

  33. Fečkan, M., Pospísil, M.: Note on fractional difference Gronwall inequalities. Electron. J. Qual. Theory Diff. Equ. Article number 44 (2014)

  34. Wu, G.-C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75(1–2), 283–287 (2014)

    Article  MathSciNet  Google Scholar 

  35. Wu, G.-C., Baleanu, D.: Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Commun. Nonlinear Sci. 22(1–3), 95–100 (2015)

    Article  MathSciNet  Google Scholar 

  36. Gautschi, W.: Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. Camb. 38(1–4), 77–81 (1959)

    Article  MathSciNet  Google Scholar 

  37. Kershaw, D.: Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comput. 41(164), 607–611 (1983)

    MathSciNet  MATH  Google Scholar 

  38. Tavazoei, M., Haeri, M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 45(8), 1886–1890 (2009)

    Article  MathSciNet  Google Scholar 

  39. Diblik, J., Fečkan, M., Pospísil, M.: Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations. Appl. Math. Comput. 257, 230–240 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Danca, M.-F., Fečkan, M., Kuznetsov, N., Chen, G.: Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system. Nonlinear Dyn. 91(4), 2523–2540 (2018)

    Article  Google Scholar 

  41. Nicol, M., Melbourne, I., Ashwin, P.: Euclidean extensions of dynamical systems. Nonlinearity 14(2), 275–300 (2001)

    Article  MathSciNet  Google Scholar 

  42. Gottwald, G., Melbourne, I.: A new test for chaos in deterministic systems. P. R. Soc. A Math. Phys. Sci. 460(2042), 603–611 (2004)

    Article  MathSciNet  Google Scholar 

  43. Gottwald, G., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009)

    Article  MathSciNet  Google Scholar 

  44. Gopal, R., Venkatesan, A., Lakshmanan, M.: Applicability of 0–1 test for strange nonchaotic attractors. Chaos 23(2), 023123 (2013). https://doi.org/10.1063/1.4808254

    Article  MathSciNet  MATH  Google Scholar 

  45. Stuart, A., Humphries, A.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  46. Xin, B., Liu, L., Hou, G., Ma, Y.: Chaos synchronization of nonlinear fractional discrete dynamical systems via linear control. Entropy 19(7), 351 (2017). https://doi.org/10.3390/e19070351

    Article  Google Scholar 

Download references

Acknowledgements

Nikolay Kuznetsov and Marius-F. Danca are supported by the Russian Science Foundation 19-41-02002, and Marius-F. Danca is supported by the Grants Slovak Research and Development Agency under the contract No. APVV-18-0308 and by the Slovak Grant Agency VEGA-SAV Nos. 2/0153/16 and 1/0078/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius-F. Danca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The ‘0-1’ test

The ’0-1’ test has its roots in [41] been developed in [42] (see also [43] or [44]). It is designed to distinguish chaotic behavior from regular behavior in deterministic systems. The input being a time series, the test is easy to implement and does not need the system equations. Consider a discrete or continuous-time dynamical system and a one-dimensional observable dataset, constructed from a time series, \(\phi (j)\), \(j=1,2,\ldots ,N\), with N some positive integer. The ‘0-1’ test bases on a theorem, which states that a nonchaotic motion is bounded, while a chaotic dynamic behaves like a Brownian motion [41].

  1. (1)

    First, for \(c\in [0,2\pi ]\), one computes the translation variables p and q [42]

    $$\begin{aligned} p(n)=\sum _{j=1}^n\phi (j)\cos (jc),~~~ q(n)=\sum _{j=1}^n\phi (j)\sin (jc), \end{aligned}$$

    for \(n=1,2,\ldots ,N\). The choice of c represents an important and sensible algorithm variable (see, for example, [43] where for c, the interval \([\pi /5,4\pi /5]\) is proposed).

  2. (2)

    To determine the growths of p and q, the mean square displacement M is determined:

    $$\begin{aligned} M(n)= & {} \lim _{N\rightarrow \infty }\frac{1}{N}\sum _{j=1}^N[p(j+n)-p(j)]^2\\&+\,[q(j+n)-q(j)]^2. \end{aligned}$$

    where \(n\ll N\) (in practice, \(n=N/10\) represents a good choice).

  3. (3)

    Next, the asymptotic growth rate K is defined as

    $$\begin{aligned} K=\lim _{n\rightarrow \infty }\log M(n)/\log n. \end{aligned}$$

If the underlying dynamics is regular (i.e., periodic or quasiperiodic), then \(K \approx 0\); if the underlying dynamics is chaotic, then \(K \approx 1\).

In Fig. 7, the case of the logistic map of integer order is presented. In Fig. 7a are presented the plots of q and p while in Fig. 7b the mean square displacement M as a function of n. In Fig. 1, the regular orbit of the logistic map \(x_{n+1}=\mu x_n(1-x_n)\) for \(\mu =3.55\) while Fig. 2 presents the chaotic orbit of the logistic map for \(\mu =4\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danca, MF., Fečkan, M. & Kuznetsov, N. Chaos control in the fractional order logistic map via impulses. Nonlinear Dyn 98, 1219–1230 (2019). https://doi.org/10.1007/s11071-019-05257-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05257-2

Keywords

Navigation