Skip to main content
Log in

Influence of simultaneous time-varying bearing and tooth mesh stiffness fluctuations on spur gear pair vibration

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work investigates the influence of time-varying roller bearing stiffness on gear-bearing system vibration. An isolated bearing model established by a finite element/contact mechanics approach is introduced to analyze the variation of bearing stiffness due to the continuous change of roller circumferential locations. Then, dynamic gear-bearing models with constant and time-varying bearing stiffness are built by analytical and finite element methods. Comparisons are conducted among the dynamic response of the different gear-bearing models to verify their accuracy and to indicate the special features introduced by the time-varying bearing stiffness. Additional resonances (or parametric instabilities) are caused by the time-varying bearing stiffness, and modulation between the mesh frequency and the bearing ball pass frequency is observed in the dynamic response. Theoretical explanations of the parametric instabilities of the system with simultaneous mesh and bearing stiffness fluctuations are derived using perturbation analysis and verified with Floquet theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Harris, S.L.: Dynamic loads on the teeth of spur gears. Proc. Inst. Mech. Eng. 172(1), 87–112 (1958)

    Article  Google Scholar 

  2. Gregory, R., Harris, S., Munro, R.: Torsional motions of a pair of spur gears. In: Proceedings of the Institution of Mechanical Engineers, vol. 178, pp. 166–173. SAGE Publications, London (1963)

  3. Kahraman, A., Singh, R.: Non-linear dynamics of a spur gear pair. J. Sound Vib. 142(1), 49–75 (1990)

    Article  Google Scholar 

  4. Wei, S., Han, Q.K., Dong, X.J., Peng, Z.K., Chu, F.L.: Dynamic response of a single-mesh gear system with periodic mesh stiffness and backlash nonlinearity under uncertainty. Nonlinear Dyn. 89(1), 1–12 (2017)

    Article  Google Scholar 

  5. Iida, H., Tamura, A., Kikuch, K., Agata, H.: Coupled torsional-flexural vibration of a shaft in a geared system of rotors: 1st report. Bull. JSME 23(186), 2111–2117 (1980)

    Article  Google Scholar 

  6. Eritenel, T., Parker, R.G.: Three-dimensional nonlinear vibration of gear pairs. J. Sound Vib. 331(15), 3628–3648 (2012)

    Article  Google Scholar 

  7. Yu, W., Mechefske, C.K., Timusk, M.: A new dynamic model of a cylindrical gear pair with localized spalling defects. Nonlinear Dyn. 91(4), 1–19 (2017)

    Google Scholar 

  8. Andersson, A., Vedmar, L.: A dynamic model to determine vibrations in involute helical gears. J. Sound Vib. 260(2), 195–212 (2003)

    Article  Google Scholar 

  9. Lee, K.: Analysis of the dynamic contact between rotating spur gears by finite element and multi-body dynamics techniques. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 215(4), 423–435 (2001)

    Article  Google Scholar 

  10. Cooley, C.G., Parker, R.G., Vijayakar, S.M.: A frequency domain finite element approach for three-dimensional gear dynamics. J. Vib. Acoust. 133(4), 041004 (2011)

    Article  Google Scholar 

  11. Parker, R.G., Vijayakar, S.M., Imajo, T.: Non-linear dynamic response of a spur gear pair: modelling and experimental comparisons. J. Sound Vib. 237(3), 435–455 (2000)

    Article  Google Scholar 

  12. Özgüven, H.: A non-linear mathematical model for dynamic analysis of spur gears including shaft and bearing dynamics. J. Sound Vib. 145(2), 239–260 (1991)

    Article  Google Scholar 

  13. Kahraman, A., Singh, R.: Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system. J. Sound Vib. 146(1), 135–156 (1991)

    Article  Google Scholar 

  14. Lin, J., Robert, R.G.: Analytical characterization of the unique properties of planetary gear free vibration. J. Vib. Acoust. 121(3), 316–321 (1999)

    Article  Google Scholar 

  15. Ambarisha, V.K., Parker, R.G.: Nonlinear dynamics of planetary gears using analytical and finite element models. J. Sound Vib. 302(3), 577–595 (2007)

    Article  Google Scholar 

  16. Liu, G., Parker, R.G.: Nonlinear dynamics of idler gear systems. Nonlinear Dyn. 53(4), 345–367 (2008)

    Article  MATH  Google Scholar 

  17. Guo, Y., Parker, R.G.: Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity. Eur. J. Mech. A/Solids 29(6), 1022–1033 (2010)

    Article  Google Scholar 

  18. Guo, Y., Parker, R.G.: Dynamic analysis of planetary gears with bearing clearance. J. Comput. Nonlinear Dyn. 7(4), 041002 (2012)

    Article  Google Scholar 

  19. Gupta, P.: Transient ball motion and skid in ball bearings. J. Lubr. Technol. 97(2), 261–269 (1975)

    Article  Google Scholar 

  20. Fukata, S., Gad, E.H., Kondou, T., Ayabe, T., Tamura, H.: On the radial vibration of ball bearings: computer simulation. Bull. JSME 28(239), 899–904 (1985)

    Article  Google Scholar 

  21. Sawalhi, N., Randall, R.B.: Simulating gear and bearing interactions in the presence of faults: part I. The combined gear bearing dynamic model and the simulation of localised bearing faults. Mech. Syst. Signal Process. 22(8), 1924–1951 (2008)

    Article  Google Scholar 

  22. Dhamande, L.S., Chaudhari, M.B.: Detection of combined gear-bearing fault in single stage spur gear box using artificial neural network. Proc. Eng. 144, 759–766 (2016)

    Article  Google Scholar 

  23. Liu, Z., Liu, Z., Zhao, J., Zhang, G.: Study on interactions between tooth backlash and journal bearing clearance nonlinearity in spur gear pair system. Mech. Mach. Theory 107, 229–245 (2017)

    Article  Google Scholar 

  24. Liew, H.V., Lim, T.C.: Analysis of time-varying rolling element bearing characteristics. J. Sound Vib. 283(3), 1163–1179 (2005)

    Article  Google Scholar 

  25. Yang, J., Lim, T.: Dynamics of coupled nonlinear hypoid gear mesh and time-varying bearing stiffness systems. SAE Int. J. Passeng. Cars Mech. Syst. 4(2), 1039–1049 (2011)

    Article  Google Scholar 

  26. Shi, Z., Lim, T.: Nonlinear time-varying dynamic interactions of hypoid gear-shaft-bearing systems. SAE Int. J. Veh. Dyn. Stab. NVH 1(2), 372–383 (2017)

    Article  Google Scholar 

  27. Viadero, F., Del Rincon, A.F., Sancibrian, R., Fernandez, P.G., De Juan, A.: A model of spur gears supported by ball bearings. WIT Trans. Model. Simul. 46, 711–722 (2007)

    Article  Google Scholar 

  28. Zhang, X., Han, Q., Peng, Z., Chu, F.: Stability analysis of a rotor-bearing system with time-varying bearing stiffness due to finite number of balls and unbalanced force. J. Sound Vib. 332(25), 6768–6784 (2013)

    Article  Google Scholar 

  29. Fernandez-del Rincon, A., Garcia, P., Diez-Ibarbia, A., de Juan, A., Iglesias, M., Viadero, F.: Enhanced model of gear transmission dynamics for condition monitoring applications: effects of torque, friction and bearing clearance. Mech. Syst. Signal Process. 85, 445–467 (2017)

    Article  Google Scholar 

  30. Vijayakar, S.M., Busby, H.R., Houser, D.R.: Linearization of multibody frictional contact problems. Comput. Struct. 29(4), 569–576 (1988)

    Article  MATH  Google Scholar 

  31. Vijayakar, S., Busby, H., Wilcox, L.: Finite element analysis of three-dimensional conformal contact with friction. Comput. Struct. 33(1), 49–61 (1989)

    Article  MATH  Google Scholar 

  32. Vijayakar, S.M.: A combined surface integral and finite element solution for a three-dimensional contact problem. Int. J. Numer. Methods Eng. 31, 525–545 (1991)

    Article  MATH  Google Scholar 

  33. Vijayakar, S.M.: Calyx users manual. Advanced Numerical Solutions LLC, Hilliard (2005)

  34. Guo, Y., Parker, R.G.: Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model. Mech. Mach. Theory 51, 32–45 (2012)

    Article  Google Scholar 

  35. Ericson, T.M., Parker, R.G.: Experimental measurement of the effects of torque on the dynamic behavior and system parameters of planetary gears. Mech. Mach. Theory 74, 370–389 (2014)

    Article  Google Scholar 

  36. Bahk, C.J., Parker, R.G.: Analytical solution for the nonlinear dynamics of planetary gears. J. Comput. Nonlinear Dyn. 6(2), 021007 (2010)

    Article  Google Scholar 

  37. Bahk, C.J., Parker, R.G.: Analytical investigation of tooth profile modification effects on planetary gear dynamics. Mech. Mach. Theory 70, 298–319 (2013)

    Article  Google Scholar 

  38. Dai, X., Cooley, C.G., Parker, R.G.: Dynamic tooth root strains and experimental correlations in spur gear pairs. Mech. Mach. Theory 101, 60–74 (2016)

    Article  Google Scholar 

  39. Hotait, M.A., Kahraman, A.: Experiments on the relationship between the dynamic transmission error and the dynamic stress factor of spur gear pairs. Mech. Mach. Theory 70, 116–128 (2013)

    Article  Google Scholar 

  40. Guo, Y., Lambert, S., Wallen, R., Errichello, R., Keller, J.: Theoretical and experimental study on gear-coupling contact and loads considering misalignment, torque, and friction influences. Mech. Mach. Theory 98, 242–262 (2016)

    Article  Google Scholar 

  41. Kahraman, A., Blankenship, G.: Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters. J. Appl. Mech. 64(1), 217–226 (1997)

    Article  Google Scholar 

  42. Cooley, C.G., Liu, C., Dai, X., Parker, R.G.: Gear tooth mesh stiffness: a comparison of calculation approaches. Mech. Mach. Theory 105, 540–553 (2016)

    Article  Google Scholar 

  43. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  44. Lin, J., Parker, R.G.: Mesh stiffness variation instabilities in two-stage gear systems. J. Vib. Acoust. 124(1), 68–76 (2001)

    Article  Google Scholar 

  45. McWhannell, D.: Parametric instability regions in multi-degree of freedom systems under quasi-periodic beating input excitation. J. Sound Vib. 48(1), 73–81 (1976)

    Article  Google Scholar 

  46. Tordion, G.V., Gauvin, R.: Dynamic stability of a two-stage gear train under the influence of variable meshing stiffnesses. J. Eng. Ind. 99(3), 785–791 (1977)

    Article  Google Scholar 

  47. Canchi, S.V., Parker, R.G.: Parametric instability of a rotating circular ring with moving, time-varying springs. J. Vib. Acoust. 128(2), 231–243 (2006)

    Article  Google Scholar 

  48. Canchi, S.V., Parker, R.G.: Effect of ring-planet mesh phasing and contact ratio on the parametric instabilities of a planetary gear ring. J. Mech. Des. 130(1), 842–849 (2008)

    Article  Google Scholar 

  49. Lin, J., Parker, R.G.: Planetary gear parametric instability caused by mesh stiffness variation. J. Sound Vib. 249(1), 129–145 (2002)

    Article  Google Scholar 

  50. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)

    MATH  Google Scholar 

  51. Li, S., Wu, Q., Zhang, Z.: Bifurcation and chaos analysis of multistage planetary gear train. Nonlinear Dyn. 75(1–2), 217–233 (2014)

    Article  MathSciNet  Google Scholar 

  52. Chang-Jian, C.W., Hsu, H.C.: Chaotic responses on gear pair system equipped with journal bearings under turbulent flow. Appl. Math. Model. 36(6), 2600–2613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Farshidianfar, A., Saghafi, A.: Bifurcation and chaos prediction in nonlinear gear systems. Shock Vib. 2014, 1–8 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is performed, while the first author is financially supported by the China Scholarship Council. The authors thank Dr. Sandeep M. Vijayakar of Advanced Numerical Solutions for his guidance and for providing the Calyx finite element software package for gear dynamics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Parker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Instability region boundaries: individual excitation

  1. 1.

    \(s_1{\varOmega _\mathrm{m}} \approx 2\omega _2\)

    $$\begin{aligned} {\varOmega _\mathrm{m}}= & {} \frac{2}{s_1} \left( \omega _2 \pm \varepsilon {\frac{{\sqrt{{\alpha ^2} + {\beta ^2}} }}{{2{\omega _2}}}}\right) . \end{aligned}$$
    (57)
    $$\begin{aligned} \alpha= & {} {K_{22}^{m} {b_{{s_1}}^{m}} }, \quad \beta = -{ K_{22}^{m} { a_{{s_1}}^{m}} }. \end{aligned}$$
    (58)
  2. 2.

    \(s_2{\varOmega _\mathrm{b}} \approx 2\omega _1\)

    $$\begin{aligned} {\varOmega _\mathrm{m}}= & {} \frac{2}{s_2 R} \left( \omega _1 \pm \varepsilon {\frac{{\sqrt{{\alpha ^2} + {\beta ^2}} }}{{2{\omega _1}}}}\right) . \end{aligned}$$
    (59)
    $$\begin{aligned} \alpha= & {} {K_{11}^{b} {b_{{s_2}}^{b}} }, \quad \beta = -{ K_{11}^{b} { a_{{s_2}}^{b}} }. \end{aligned}$$
    (60)
  3. 3.

    \(s_2{\varOmega _\mathrm{b}} \approx 2\omega _2\)

    $$\begin{aligned} {\varOmega _\mathrm{m}}= & {} \frac{2}{s_2 R} \left( \omega _2 \pm \varepsilon {\frac{{\sqrt{{\alpha ^2} + {\beta ^2}} }}{{2{\omega _2}}}}\right) . \end{aligned}$$
    (61)
    $$\begin{aligned} \alpha= & {} {K_{22}^{b} {b_{{s_2}}^{b}} }, \quad \beta = -{ K_{22}^{b} { a_{{s_2}}^{b}} }. \end{aligned}$$
    (62)
  4. 4.

    \(s_2{\varOmega _\mathrm{b}} \approx \omega _1 + \omega _2\)

    $$\begin{aligned} {\varOmega _\mathrm{m}}= & {} \frac{1}{s_2 R} \left( \omega _1 + \omega _2 \pm \varepsilon \sqrt{\frac{{{\alpha _1}{\alpha _2} + {\beta _1}{\beta _2}}}{{{\omega _1}{\omega _2}}}}\right) . \nonumber \\ \end{aligned}$$
    (63)
    $$\begin{aligned} \alpha _1= & {} {K_{21}^{b} {b_{{s_2}}^{b}} }, \quad \beta _1 = - { K_{21}^{b} { a_{{s_2}}^{b}} }; \end{aligned}$$
    (64)
    $$\begin{aligned} \alpha _2= & {} {K_{12}^{b} {b_{{s_2}}^{b}} } , \quad \beta _2 = - { K_{12}^{b} { a_{{s_2}}^{b}} }. \end{aligned}$$
    (65)

B Instability region boundaries: coupled excitation

  1. 1.

    \(s_1{\varOmega _\mathrm{m}} - s_2{\varOmega _\mathrm{b}} \approx 2\omega _2\)

    $$\begin{aligned} {\varOmega _\mathrm{m}}= & {} \frac{2R}{s_1 R - s_2} \left[ \omega _2 + \frac{{2\psi \pm \sqrt{({\alpha ^2} + {\beta ^2})} }}{2 \omega _2} \varepsilon ^2 \right] , \nonumber \\\end{aligned}$$
    (66)
    $$\begin{aligned} \psi= & {} \psi _\mathrm{m} + \psi _\mathrm{b}, \end{aligned}$$
    (67)
    $$\begin{aligned} \psi _\mathrm{m}= & {} \sum \limits _{t = 1}^2 \frac{{K_{2t}^mK_{t2}^m}}{2}\left[ \frac{{{{(a_{{s_1}}^m)}^2} + {{(b_{{s_1}}^m)}^2}}}{{{{({\omega _2} + {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{{{(a_{{s_1}}^m)}^2} + {{(b_{{s_1}}^m)}^2}}}{{{{({\omega _2} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (68)
    $$\begin{aligned} \psi _\mathrm{b}= & {} \sum \limits _{t = 1}^2 \frac{{K_{2t}^bK_{t2}^b}}{2}\left[ \frac{{{{(a_{{s_2}}^b)}^2} + {{(b_{{s_2}}^b)}^2}}}{{{{({\omega _2} + {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{{(a_{{s_2}}^b)}^2} + {{(b_{{s_2}}^b)}^2}}{{{{({\omega _2} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \right] . \end{aligned}$$
    (69)
    $$\begin{aligned} \alpha= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{2t}^mK_{t2}^b(a_{{s_2}}^ba_{{s_1}}^m + b_{{s_2}}^bb_{{s_1}}^m)}}{{{{({\omega _2} + {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{K_{2t}^bK_{t2}^m(a_{{s_1}}^ma_{{s_2}}^b + b_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _2} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (70)
    $$\begin{aligned} \beta= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{2t}^mK_{t2}^b(a_{{s_2}}^bb_{{s_1}}^m - a_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _2} + {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{K_{2t}^bK_{t2}^m(a_{{s_2}}^bb_{{s_1}}^m - a_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _2} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (71)
    $$\begin{aligned} {\hat{\omega }}= & {} \frac{2\omega _2}{s_1 R -s_2} . \end{aligned}$$
    (72)
  2. 2.

    \(s_1{\varOmega _\mathrm{m}} + s_2{\varOmega _\mathrm{b}} \approx 2\omega _1\)

    $$\begin{aligned} {\varOmega _\mathrm{m}}= & {} \frac{2R}{s_1 R + s_2} \left[ \omega _1 + \frac{{2\psi \pm \sqrt{({\alpha ^2} + {\beta ^2})} }}{2 \omega _1} \varepsilon ^2 \right] , \nonumber \\ \end{aligned}$$
    (73)
    $$\begin{aligned} \psi= & {} \psi _\mathrm{m} + \psi _\mathrm{b}, \end{aligned}$$
    (74)
    $$\begin{aligned} \psi _\mathrm{m}= & {} \sum \limits _{t = 1}^2 \frac{{K_{1t}^mK_{t1}^m}}{2}\left[ \frac{{{{(a_{{s_1}}^m)}^2} + {{(b_{{s_1}}^m)}^2}}}{{{{({\omega _1} + {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{{{(a_{{s_1}}^m)}^2} + {{(b_{{s_1}}^m)}^2}}}{{{{({\omega _1} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (75)
    $$\begin{aligned} \psi _\mathrm{b}= & {} \sum \limits _{t = 1}^2 \frac{{K_{1t}^bK_{t1}^b}}{2}\left[ \frac{{{{(a_{{s_2}}^b)}^2} + {{(b_{{s_2}}^b)}^2}}}{{{{({\omega _1} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{{(a_{{s_2}}^b)}^2} + {{(b_{{s_2}}^b)}^2}}{{{{({\omega _1} + {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \right] . \end{aligned}$$
    (76)
    $$\begin{aligned} \alpha= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{1t}^mK_{t1}^b( -a_{{s_2}}^b a_{{s_1}}^m + b_{{s_2}}^bb_{{s_1}}^m)}}{{{{({\omega _1} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{K_{1t}^bK_{t1}^m(-a_{{s_1}}^m a_{{s_2}}^b + b_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _1} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (77)
    $$\begin{aligned} \beta= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{1t}^mK_{t1}^b(-a_{{s_2}}^bb_{{s_1}}^m - a_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _1} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{K_{1t}^bK_{t1}^m(-a_{{s_2}}^bb_{{s_1}}^m - a_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _1} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (78)
    $$\begin{aligned} {\hat{\omega }}= & {} \frac{2\omega _1}{s_1 R +s_2} . \end{aligned}$$
    (79)
  3. 3.

    \(s_1{\varOmega _\mathrm{m}} + s_2{\varOmega _\mathrm{b}} \approx 2\omega _2\)

    $$\begin{aligned} {\varOmega _\mathrm{m}}= & {} \frac{2R}{s_1 R + s_2} \left[ \omega _2 + \frac{{2\psi \pm \sqrt{({\alpha ^2} + {\beta ^2})} }}{2 \omega _2} \varepsilon ^2 \right] , \nonumber \\\end{aligned}$$
    (80)
    $$\begin{aligned} \psi= & {} \psi _\mathrm{m} + \psi _\mathrm{b}, \end{aligned}$$
    (81)
    $$\begin{aligned} \psi _\mathrm{m}= & {} \sum \limits _{t = 1}^2 \frac{{K_{2t}^mK_{t2}^m}}{2}\left[ \frac{{{{(a_{{s_1}}^m)}^2} + {{(b_{{s_1}}^m)}^2}}}{{{{({\omega _2} + {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{{{(a_{{s_1}}^m)}^2} + {{(b_{{s_1}}^m)}^2}}}{{{{({\omega _2} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (82)
    $$\begin{aligned} \psi _\mathrm{b}= & {} \sum \limits _{t = 1}^2 \frac{{K_{2t}^bK_{t2}^b}}{2}\left[ \frac{{{{(a_{{s_2}}^b)}^2} + {{(b_{{s_2}}^b)}^2}}}{{{{({\omega _2} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{{(a_{{s_2}}^b)}^2} + {{(b_{{s_2}}^b)}^2}}{{{{({\omega _2} + {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \right] . \end{aligned}$$
    (83)
    $$\begin{aligned} \alpha= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{2t}^mK_{t2}^b(b_{{s_2}}^bb_{{s_1}}^m-a_{{s_2}}^ba_{{s_1}}^m) }}{{{{({\omega _2} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{K_{2t}^bK_{t2}^m(b_{{s_1}}^mb_{{s_2}}^b-a_{{s_1}}^ma_{{s_2}}^b )}}{{{{({\omega _2} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (84)
    $$\begin{aligned} \beta= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{2t}^mK_{t2}^b(-a_{{s_2}}^bb_{{s_1}}^m - a_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _2} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{K_{2t}^bK_{t2}^m(-a_{{s_2}}^bb_{{s_1}}^m - a_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _2} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (85)
    $$\begin{aligned} {\hat{\omega }}= & {} \frac{2\omega _2}{s_1 R +s_2} . \end{aligned}$$
    (86)
  4. 4.

    \(s_1{\varOmega _\mathrm{m}} + s_2{\varOmega _\mathrm{b}} \approx \omega _1 + \omega _2\)

    $$\begin{aligned} {\varOmega _\mathrm{m}}= & {} \frac{R}{s_1 R + s_2} \left[ \omega _1 + \omega _2 \pm \varepsilon ^2 \sqrt{\frac{{{\alpha _1}{\alpha _2} + {\beta _1}{\beta _2}}}{{{\omega _1}{\omega _2}}}} \right] , \nonumber \\\end{aligned}$$
    (87)
    $$\begin{aligned} {\alpha _1}= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{2t}^mK_{t1}^b(-a_{{s_2}}^ba_{{s_1}}^m + b_{{s_2}}^bb_{{s_1}}^m)}}{{{{({\omega _1} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{K_{2t}^bK_{t1}^m(-a_{{s_1}}^ma_{{s_2}}^b + b_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _1} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (88)
    $$\begin{aligned} {\beta _1}= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{2t}^mK_{t1}^b(-a_{{s_2}}^bb_{{s_1}}^m - b_{{s_2}}^ba_{{s_1}}^m)}}{{{{({\omega _1} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{K_{2t}^bK_{t1}^m( - a_{{s_1}}^mb_{{s_2}}^b - b_{{s_1}}^ma_{{s_2}}^b)}}{{{{({\omega _1} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (89)
    $$\begin{aligned} {\alpha _2}= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{1t}^mK_{t2}^b(-a_{{s_2}}^ba_{{s_1}}^m + b_{{s_2}}^bb_{{s_1}}^m)}}{{{{({\omega _2} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{ K_{1t}^b K_{t2}^m(-a_{{s_1}}^ma_{{s_2}}^b + b_{{s_1}}^mb_{{s_2}}^b)}}{{{{({\omega _2} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (90)
    $$\begin{aligned} {\beta _2}= & {} \sum \limits _{t = 1}^2 \left[ \frac{{K_{1t}^mK_{t2}^b(-a_{{s_2}}^bb_{{s_1}}^m - b_{{s_2}}^ba_{{s_1}}^m)}}{{{{({\omega _2} - {s_2}{\hat{\omega }} )}^2} - \omega _t^2}} \nonumber \right. \\&\left. + \frac{{K_{1t}^bK_{t2}^m( - a_{{s_1}}^mb_{{s_2}}^b - b_{{s_1}}^ma_{{s_2}}^b)}}{{{{({\omega _2} - {s_1}R{\hat{\omega }} )}^2} - \omega _t^2}} \right] , \end{aligned}$$
    (91)
    $$\begin{aligned} {\hat{\omega }}= & {} \frac{\omega _1 + \omega _2}{s_1 R+s_2} . \end{aligned}$$
    (92)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Hong, J. & Parker, R.G. Influence of simultaneous time-varying bearing and tooth mesh stiffness fluctuations on spur gear pair vibration. Nonlinear Dyn 97, 1403–1424 (2019). https://doi.org/10.1007/s11071-019-05056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05056-9

Keywords

Navigation