Skip to main content
Log in

Bifurcation analysis on the effect of store-operated and receptor-operated calcium channels for calcium oscillations in astrocytes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Experimental evidence has proved that calcium ions (\(\mathrm {Ca^{2+}}\)) play an important role in cellular physiological processes via calcium oscillations. The entry rate of \(\mathrm {Ca^{2+}}\) into cells through plasma membrane cells is a major modulator of intracellular \(\mathrm {Ca^{2+}}\) dynamics, including the voltage-gated \(\mathrm {Ca^{2+}}\) channel, the store-operated \(\mathrm {Ca^{2+}}\) channel (SOCC) and the receptor-operated \(\mathrm {Ca^{2+}}\) channel (ROCC). In this paper, we modify an established four-dimensional dynamical model, which contains the SOCC and ROCC, and carry out a bifurcation analysis to study dynamics of the model. In particular, Hopf bifurcation is identified with the maximum flow of the SOCC chosen as the bifurcation parameter, and normal form theory is applied to consider the stability of bifurcating limit cycles. Bifurcation of multiple limit cycles arising from generalized Hopf bifurcation is also discussed, which may yield complex dynamical behaviors. Further, it is shown that the variation of the maximum flows for different calcium channels determines the parameter range for stable oscillations, as well as for the frequency and amplitude of oscillations. The results indicate that Hopf bifurcation is the main source to generate oscillating behaviors, yielding a different bistable phenomenon which involves stable limit cycle and stable equilibrium. Moreover, it is shown that partially blocking the SOCC or the ROCC can change the parameter region of stable calcium oscillations, and the ROCC has more impact than the SOCC on amplitude or frequency of calcium oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Clapham, D.E.: Calcium signaling. Cell 80(2), 259–268 (1995)

    Article  Google Scholar 

  2. Ji, Q., Zhou, Y., Yang, Z., Meng, X.: Evaluation of bifurcation phenomena in a modified Shenc̈larter model for intracellular \({{\rm Ca}}^{2+}\) bursting oscillations. Nonlinear Dyn. 84(3), 1–8 (2016)

    Article  Google Scholar 

  3. Gu, H., Pan, B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81(4), 2107–2126 (2015)

    Article  MathSciNet  Google Scholar 

  4. Pinto, M.C., Tonelli, F.M., Vieira, A.L., Kihara, A.H., Ulrich, H., Resende, R.R.: Studying complex system: calcium oscillations as attractor of cell differentiation. Integr. Biol. 8(2), 130–148 (2016)

    Article  Google Scholar 

  5. Agulhon, C., Petravicz, J., McMullen, A.B., Sweger, E.J., Minton, S.K., Taves, S.R., Casper, K.B., Fiacco, T.A., McCarthy, K.D.: What is the role of astrocyte calcium in neurophysiology? Neuron 59(6), 932–946 (2008)

    Article  Google Scholar 

  6. Pellerin, L., Magistretti, P.J.: Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10(1), 53–62 (2004)

    Article  Google Scholar 

  7. Fellin, T., Pascual, O., Haydon, P.G.: Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21(3), 208–215 (2006)

    Article  Google Scholar 

  8. Navarrete, M., Perea, G., Maglio, L., Pastor, J., García de Sola, R., Araque, A.: Astrocyte calcium signal and gliotransmission in human brain tissue. Cereb. Cortex 23(5), 1240–1246 (2012)

    Article  Google Scholar 

  9. Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., Smith, S.J.: Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247(4941), 470–473 (1990)

    Article  Google Scholar 

  10. Hamilton, N.B., Attwell, D.: Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 11(4), 227 (2010)

    Article  Google Scholar 

  11. Parekh, A.B., Putney Jr., J.W.: Store-operated calcium channels. Physiol. Rev. 85(2), 757–810 (2005)

    Article  Google Scholar 

  12. Putney Jr., J.W.: Presenilins, Alzheimer’s disease, and capacitative calcium entry. Neuron 27(3), 411–412 (2000)

    Article  Google Scholar 

  13. Ong, H.L., Liu, X., Tsaneva-Atanasova, K., Singh, B.B., Bandyopadhyay, B.C., Swaim, W.D., Russell, J.T., Hegde, R.S., Sherman, A., Ambudkar, I.S.: Relocalization of STIM1 for activation of store-operated \({{{\rm Ca}}}^{2+}\) entry is determined by the depletion of subplasma membrane endoplasmic reticulum \({{{\rm Ca}}}^{2+}\) store. J. Biol. Chem. 282(16), 12176–12185 (2007)

    Article  Google Scholar 

  14. Shuttleworth, T.J.: Stim and orai proteins and the non-capacitative ARC channels. Front. Biosci. 17, 847 (2012)

    Article  Google Scholar 

  15. Ullah, G., Jung, P., Cornell-Bell, A.H.: Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium 39(3), 197–208 (2006)

    Article  Google Scholar 

  16. Lopez-Caamal, F., Oyarzún, D.A., Middleton, R.H., García, M.R.: Spatial quantification of cytosolic \({{{\rm Ca}}}^{2+}\) accumulation in nonexcitable cells: an analytical study. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 11(3), 592–603 (2014)

    Article  Google Scholar 

  17. Riera, J., Hatanaka, R., Uchida, T., Ozaki, T., Kawashima, R.: Quantifying the uncertainty of spontaneous \({{{\rm Ca}}}^{2+}\) oscillations in astrocytes: particulars of Alzheimer’s disease. Biophys. J. 101(3), 554–564 (2011)

    Article  Google Scholar 

  18. Di Garbo, A., Barbi, M., Chillemi, S., Alloisio, S., Nobile, M.: Calcium signalling in astrocytes and modulation of neural activity. Biosystems 89(1–3), 74–83 (2007)

    Article  Google Scholar 

  19. Dupont, G., Lokenye, E.F.L., Challiss, R.J.: A model for \({{{\rm Ca}}}^{2+}\) oscillations stimulated by the type 5 metabotropic glutamate receptor: an unusual mechanism based on repetitive, reversible phosphorylation of the receptor. Biochimie 93(12), 2132–2138 (2011)

    Article  Google Scholar 

  20. Postnov, D., Koreshkov, R., Brazhe, N., Brazhe, A., Sosnovtseva, O.: Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J. Biol. Phys. 35(4), 425–445 (2009)

    Article  Google Scholar 

  21. Li, Y.X., Rinzel, J.: Equations for \(\rm InsP_{3}\) receptor-mediated \({{{\rm Ca}}}^{2+}\) oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. J. Theor. Biol. 166(4), 461–473 (1994)

    Article  Google Scholar 

  22. Höfer, T., Venance, L., Giaume, C.: Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J. Neurosci. 22(12), 4850–4859 (2002)

    Article  Google Scholar 

  23. Kummer, U., Olsen, L.F., Dixon, C.J., Green, A.K., Bornberg-Bauer, E., Baier, G.: Switching from simple to complex oscillations in calcium signaling. Biophys. J. 79(3), 1188–1195 (2000)

    Article  Google Scholar 

  24. Dupont, G., Goldbeter, A.: One-pool model for \({{{\rm Ca}}}^{2+}\) oscillations involving \({{{\rm Ca}}}^{2+}\) and inositol 1,4,5-trisphosphate as co-agonists for \({{{\rm Ca}}}^{2+}\) release. Cell Calcium 14(4), 311–322 (1993)

    Article  Google Scholar 

  25. Riera, J., Hatanaka, R., Ozaki, T., Kawashima, R.: Modeling the spontaneous \({{{\rm Ca}}}^{2+}\) oscillations in astrocytes: inconsistencies and usefulness. J. Integr. Neurosci. 10(04), 439–473 (2011)

    Article  Google Scholar 

  26. Manninen, T., Havela, R., Linne, M.L.: Reproducibility and comparability of computational models for astrocyte calcium excitability. Front. Neuroinform. 11, 11 (2017)

    Article  Google Scholar 

  27. Smyth, J.T., Hwang, S.Y., Tomita, T., DeHaven, W.I., Mercer, J.C., Putney, J.W.: Activation and regulation of store-operated calcium entry. J. Cell. Mol. Med. 14(10), 2337–2349 (2010)

    Article  Google Scholar 

  28. Soboloff, J., Rothberg, B.S., Madesh, M., Gill, D.L.: Stim proteins: dynamic calcium signal transducers. Nat. Rev. Mol. Cell Biol. 13(9), 549 (2012)

    Article  Google Scholar 

  29. Cao, P., Tan, X., Donovan, G., Sanderson, M.J., Sneyd, J.: A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells. PLoS Comput. Biol. 10(8), e1003783 (2014)

    Article  Google Scholar 

  30. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness, vol. 48. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  31. Yu, P.: Closed-form conditions of bifurcation points for general differential equations. Int. J. Bifurc. Chaos 15(04), 1467–1483 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu, P.: Computation of normal forms via a perturbation technique. J. Sound Vib. 211(1), 19–38 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, W., Yu, P.: Hopf and generalized hopf bifurcations in a recurrent autoimmune disease model. Int. J. Bifurc. Chaos 26(05), 1650079 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, P., Han, M.: Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields. Chaos Solitons Fractals 24(1), 329–348 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Putney, J.W., Broad, L.M., Braun, F.J., Lievremont, J.P., Bird, G.S.J.: Mechanisms of capacitative calcium entry. J. Cell Sci. 114(12), 2223–2229 (2001)

    Google Scholar 

  36. Malarkey, E.B., Ni, Y., Parpura, V.: \({{{\rm Ca}}}^{2+}\) entry through TRPC channels contributes to intracellular \({{{\rm Ca}}}^{2+}\) dynamics and consequent glutamate release from rat astrocytes. Glia 56(8), 821–835 (2008)

    Article  Google Scholar 

  37. Jousset, H., Frieden, M., Demaurex, N.: Stim knockdown reveals that store-operated \({{{\rm Ca}}}^{2+}\) channels located close to sarco/endoplasmic \({{{\rm Ca}}}^{2+}\) ATPases (SERCA) pumps silently refill the endoplasmic reticulum. J. Biol. Chem. 282(15), 11456–11464 (2007)

    Article  Google Scholar 

  38. Croft, W., Reusch, K., Tilunaite, A., Russell, N.A., Thul, R., Bellamy, T.C.: Probabilistic encoding of stimulus strength in astrocyte global calcium signals. Glia 64(4), 537–552 (2016)

    Article  Google Scholar 

  39. Berridge, M.J., Galione, A.: Cytosolic calcium oscillators. FASEB J. 2(15), 3074–3082 (1988)

    Article  Google Scholar 

  40. Zhao, Z., Bing, J., Gu, H.: Bifurcations and enhancement of neuronal firing induced by negative feedback. Nonlinear Dyn. 86(3), 1–12 (2016)

    Article  Google Scholar 

  41. Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., Moss, F.: Homoclinic bifurcation in a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 10(1), 231–239 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mandelblat, Y., Etzion, Y., Grossman, Y., Golomb, D.: Period doubling of calcium spike firing in a model of a Purkinje cell dendrite. J. Comput. Neurosci. 11(1), 43–62 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Natural Sciences and Engineering Research Council of Canada (No. R2686A02). A. Zhou also thanks the supports received from the Tianjin University Ph.D. Training Program and Western University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, A., Liu, X. & Yu, P. Bifurcation analysis on the effect of store-operated and receptor-operated calcium channels for calcium oscillations in astrocytes. Nonlinear Dyn 97, 733–748 (2019). https://doi.org/10.1007/s11071-019-05009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05009-2

Keywords

Navigation