Skip to main content
Log in

Nonlinear state-dependent feedback control of a pest-natural enemy system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The numbers of pests and of natural enemies released to control them as part of integrated pest management strategies are density dependent. Therefore, the numbers of natural enemies to be released and the rate at which they kill pests should depend on their densities when the number of the pest population has reached the economic threshold. Bearing this in mind, a classic Lotka–Volterra system but with nonlinear state-dependent feedback control tactics is proposed and analysed in this paper. Furthermore, the definition and properties of the Poincaré map which is defined in the phase set were investigated for various cases, allowing us to address the existence and global stability of an order-1 periodic solution of the model with nonlinear feedback control. Moreover, the existence and nonexistence of periodic solutions with an order larger than 2 or 3 are also discussed. The modelling methods and analytical techniques developed could be widely used and applied in other systems with threshold control such as the glucose insulin regulatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together. ICES J. Mar. Sci. 3(1), 3–51 (1928)

    Article  Google Scholar 

  2. Sabelis, M.W., Diekmann, O., Jansen, V.A.A.: Metapopulation persistence despite local extinction: predator-prey patch models of the Lotka-Volterra type. Biol. J. Linn. Soc. 42, 267–283 (1991)

    Article  Google Scholar 

  3. Boukal, D.S., Křivan, V.: Lyapunov functions for Lotka-Volterra predator-prey models with optimal foraging behavior. J. Math. Biol. 39, 493–517 (1999)

    Article  MathSciNet  Google Scholar 

  4. Seo, G., DeAngelis, D.L.: A predator-prey model with a Holling type I functional response including a predator mutual interference. J. Nonlinear. Sci. 21, 811–833 (2011)

    Article  MathSciNet  Google Scholar 

  5. Pang, P.Y.H., Wang, M.: Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200, 245–273 (2004)

    Article  MathSciNet  Google Scholar 

  6. Aziz-Alaoui, M.A., Daher, M.: Okiye: boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MathSciNet  Google Scholar 

  7. Zhang, S., Meng, X., Zhang, T.: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects. Nonlinear Anal. Hybrid Syst. 26, 19–37 (2017)

    Article  MathSciNet  Google Scholar 

  8. Roy, A.B., Solimano, F.: Global stability and oscillations in classical Lotka-Volterra loops. J. Math. Biol. 24, 603–617 (1987)

    Article  MathSciNet  Google Scholar 

  9. Choo, S.: Global stability in n-dimensional discrete Lotka-Volterra predator-prey models. Adv. Differ. Equ. NY. 11, 1–17 (2014)

    MathSciNet  Google Scholar 

  10. Beretta, E., Capasso, V., Rinaldi, F.: Global stability results for a generalized Lotka-Volterra system with distributed delays: applications to predator-prey and to epidemic systems. J. Math. Biol. 26, 661–688 (1988)

    Article  MathSciNet  Google Scholar 

  11. Kuang, Y., Smith, H.L.: Global stability for infinite delay Lotka-Volterra type systems. J. Differ. Equ. 103, 221–246 (1993)

    Article  MathSciNet  Google Scholar 

  12. Li, Y., Kuang, Y.: Periodic solutions of periodic delay Lotka-Volterra equations and systems. J. Math. Anal. Appl. 255, 260–280 (2001)

    Article  MathSciNet  Google Scholar 

  13. Zhu, G., Meng, X., Chen, L.: The dynamics of a mutual interference age structured predator-prey model with time delay and impulsive perturbations on predators. Appl. Math. Comput. 216(1), 308–316 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Wang, B., Yan, J., Cheng, J., Zhong, S.: New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals. Appl. Math. Comput. 314, 322–333 (2017)

    MathSciNet  Google Scholar 

  15. Zeng, G., Chen, L., Chen, J.: Persistence and periodic orbits for two-species nonautonomous diffusion Lotka-Volterra models. Math. Comput. Model. 20, 69–80 (1994)

    Article  MathSciNet  Google Scholar 

  16. Cao, F., Chen, L.: Asymptotic behavior of nonautonomous diffusive Lotka-Volterra model. System Sci. Math. Sci. 11, 107–111 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Cui, J., Chen, L.: Permanence and extinction in logistic and Lotka-Volterra systems with diffusion. J. Math. Anal. Appl. 258, 512–535 (2001)

    Article  MathSciNet  Google Scholar 

  18. Hastings, A.: Global stability in Lotka-Volterra systems with diffusion. J. Math. Biol. 6, 163–168 (1978)

    Article  MathSciNet  Google Scholar 

  19. Flint, M.L., van den Bosch, R.: Introduction to integrated pest management. Plenum press, New York (1981)

    Book  Google Scholar 

  20. Van Lenteren, J.C.: Integrated pest management in protected crops. In: Dent D (ed) Integrated Pest Management, pp. 311–320. Chapman Hall, London (1995)

  21. Tang, S.Y., Chen, L.S.: Modelling and analysis of integrated pest management strategy. Discrete Cont. Dyn. B 4, 759–768 (2004)

    Article  MathSciNet  Google Scholar 

  22. Tang, S.Y., Cheke, R.A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50, 257–292 (2005)

    Article  MathSciNet  Google Scholar 

  23. Tang, S.Y., Xiao, Y.N., Chen, L.S., Cheke, R.A.: Integrated pest management models and their dynamical behaviour. B. Math. Biol. 67, 115–135 (2005)

    Article  MathSciNet  Google Scholar 

  24. Liu, B., Zhang, Y.J., Chen, L.S., Sun, L.H.: The dynamics of a prey-dependent consumption model concerning integrated pest management. Acta Math. Sin. 21(3), 541–554 (2005)

    Article  MathSciNet  Google Scholar 

  25. Liu, X.N., Chen, L.S.: Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator. Chaos Solitons Fract. 16, 311–320 (2003)

    Article  MathSciNet  Google Scholar 

  26. Tang, S.Y., Tang, B., Wang, A.L., Xiao, Y.N.: Holling II predator-prey impulsive semi-dynamic model with complex Poincare map. Nonlinear Dynam. 81, 1579–1596 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Yang, J., Tang, S.: Holling type II predator-prey model with nonlinear pulse as state-dependent feedback control. J. Comput. Appl. Math. 291, 225–241 (2016)

    Article  MathSciNet  Google Scholar 

  28. Feng, L., Liu, Z.: An impulsive periodic predator-prey Lotka-Volterra type dispersal system with mixed functional responses. J. Appl. Math. Comput. 45, 235–257 (2014)

    Article  MathSciNet  Google Scholar 

  29. Tang, S.Y., Pang, W.H., Cheke, R.A., Wu, J.H.: Global dynamics of a state-dependent feedback control system. Adv. Differ. Equ. 2015(1), 322 (2015)

    Article  MathSciNet  Google Scholar 

  30. Wang, X., Tian, Y., Tang, S.: A holling type II pest and natural enemy model with density dependent IPM strategy. Math. Probl. Eng. 2017, 1–12 (2017)

    MathSciNet  Google Scholar 

  31. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On The Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  Google Scholar 

  32. Ciesielski, K.: On stability in impulsive dynamical systems. Bull. Pol. Acad. Sci. Math. 52, 81–91 (2004)

    Article  MathSciNet  Google Scholar 

  33. Kaul, S.: On impulsive semidynamical systems. J. Math. Anal. Appl. 150, 120–128 (1990)

    Article  MathSciNet  Google Scholar 

  34. Kaul, S.: On impulsive semidynamical systems III: Lyapunov stability. Recent Trends Differ. Equ. Ser. Appl. Anal. 1, 335–345 (1992)

    Google Scholar 

  35. Bainov, D.D., Simeonov, P.S.: Systems with Impulse Effect: Stability. Theory and Applications. Ellis Hordwood limited, Chichester (1989)

    MATH  Google Scholar 

  36. Ciesielski, K.: On semicontinuity in impulsive dynamical systems. Bull. Pol. Acad. Sci. Math. 52, 71–80 (2004)

    Article  MathSciNet  Google Scholar 

  37. Gao, W., Tang, S.Y.: The effects of impulsive releasing methods of natural enemies on pest control and dynamical complexity. Nonlinear Anal. Hybri. 5, 540–553 (2011)

    Article  MathSciNet  Google Scholar 

  38. Jiang, G., Lu, Q., Qian, L.: Complex dynamics of a Holling type II prey-predator system with state feedback control. Chaos Solitons Fract. 31, 448–461 (2007)

    Article  MathSciNet  Google Scholar 

  39. Li, S., Liu, W.: A delayed Holling type III functional response predator-prey system with impulsive perturbation on the prey. Adv. Differ. Equ. 2016, 42 (2016)

    Article  MathSciNet  Google Scholar 

  40. Huang, M.Z., Li, J.X., Song, X.Y., Guo, H.J.: Modeling impulsive injections of insulin: towards artificial pancreas. SIAM J. Appl. Math. 72, 1524–1548 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFCs, 11471201, 11631012, 61772017), and by the Fundamental Research Funds for the Central Universities GK201701001, and by the Youth Foundation of Hubei University For Nationalities MY2017Q007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyi Tang.

Ethics declarations

Conflicts of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Tang, S. & Cheke, R.A. Nonlinear state-dependent feedback control of a pest-natural enemy system. Nonlinear Dyn 94, 2243–2263 (2018). https://doi.org/10.1007/s11071-018-4487-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4487-4

Keywords

Navigation