Skip to main content
Log in

Influence of nonlinear subunits on the resonance frequency band gaps of acoustic metamaterial

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recently, a significant attention has been directed toward so called ‘acoustic metamaterials’ which have large similarity with already-known ‘electromagnetic metamaterials’ which are applied for elimination of the electromagnetic waves. The stop of electromagnetic waves is realized with the negative refractive index, negative permittivity and negative permeability. Motivated by the mathematical analogy between acoustic and electromagnetic waves, the acoustic metamaterials are introduced. It was asked the material to have negative effective mass. To obtain the negative effective mass, the artificial material, usually composite, has to be designed. The basic unit is a vibration absorber which consists of a lumped mass attached with a spring to the basic mechanical system. The purpose of the unit is to give a band gap where some frequencies of acoustic wave are stopped. We investigated the nonlinear mass-in-mass unit excited with any periodic force. Mathematical model of the motion is a system of two coupled strongly nonlinear and nonhomogeneous second-order differential equations. The solution of equations is assumed in the form of the Ateb (inverse beta) periodic function. The frequency of vibration is obtained as the function of the parameters of the excitation force. The effective mass of the system is also determined. Regions of negative effective mass are calculated. For these values the motion of the forced mass stops. It is concluded that the stop frequency gaps are much wider for the nonlinear than for the linear system. Based on the obtained parameter values, the acoustic metamaterial could be designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Sov. Phys. Uspekhi 10, 509–514 (1968)

    Article  Google Scholar 

  2. Li, J., Chan, C.T.: Double-negative acoustic metamaterial. Phys. Rev. E 70(055602), 4 (2004)

    Google Scholar 

  3. Ding, Y., Liu, Z., Qiu, C., Shi, J.: Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99(9), 093904 (2007)

    Article  Google Scholar 

  4. Milton, G.W.: New metamaterials with macroscopic behavior outside that of continuum elastodynamics. N. J. Phys. 9(359), 1–13 (2007)

    MathSciNet  Google Scholar 

  5. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    Article  Google Scholar 

  6. Huang, H.H., Sun, C.T., Huang, G.I.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)

    Article  Google Scholar 

  7. Huang, H.H., Sun, C.T.: Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. N. J. Phys. 11, 013003 (2009)

    Article  Google Scholar 

  8. Cveticanin, L., Mester, Gy: Theory of acoustic metamaterials and metamaterial beams: an overview. Acta Polytechnica Hungarica 13(7), 43–62 (2016)

    Google Scholar 

  9. Wang, T., Sheng, M.P., Qin, Q.H.: Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators. Phys. Lett. A 380, 525–529 (2016)

    Article  Google Scholar 

  10. Yao, S.W., Zhou, X., Hu, G.: Experimental study on negative effective mass in a 1D mass-spring system. N. J. Phys. 10, 043020 (2008)

    Article  Google Scholar 

  11. Fok, L., Ambati, M., Zhang, X.: Acoustic metamaterials. MRS Bull. 33, 931–934 (2008)

    Article  Google Scholar 

  12. Calius, E.P., Bremaud, X., Smith, B., Hall, A.: Negative mass sound shielding structures: early results. Phys. Status Solidi B 246(9), 2089–2097 (2009)

    Article  Google Scholar 

  13. Pai, P.F.: Metamaterial-based broadband elastic wave absorber. J. Intell. Mater. Syst. Struct. 21, 517–528 (2010)

    Article  Google Scholar 

  14. Tan, K.T., Huang, H.H., Sun, C.T.: Optimizing the band gap of effective mass negativity in acoustic metamaterials. Appl. Phys. Lett. 101, 241902 (2012)

    Article  Google Scholar 

  15. Sun, C.T., Manimala, J.M., Huang, H.H.: Development of negative effective mass structures. Final technical report submitted as part of the NextGen Aeronautics Inc. prime contract for the DARPA Structural-Logic program (2013)

  16. Liu, Z., Chan, C.T., Sheng, P.: Analytic model of phononic crystals with local resonances. Phys. Rev. B 71(1), 014103 (2005)

    Article  Google Scholar 

  17. Harne, L.R., Song, Y., Dai, Q.: Trapping and attenuating broadband vibroacoustic energy with hyperdamping metamaterials. Extrem. Mech. Lett. 12, 41–47 (2017)

    Article  Google Scholar 

  18. Yang, X.W., Lee, J.S., Kim, Y.Y.: Effective mass density based topology optimization of locally resonant acoustic metamaterials for band gap maximization. J. Sound Vib. 383, 89–107 (2016)

    Article  Google Scholar 

  19. Zhao, H.G., Liu, Y.Z., Wen, J.H., Yu, D.L., Wang, G., Wen, X.S.: Sound absorption of locally resonant sonic materials. Chin. Phys. Lett. 23(8), 2132 (2006)

    Article  Google Scholar 

  20. Liu, Z., Yang, S., Zhao, X.: Ultrawide band gap locally resonant sonic materials. Chin. Phys. Lett. 22(12), 3107 (2005)

    Article  Google Scholar 

  21. Sheng, P., Zhang, X., Liu, Z., Chan, C.T.: Locally resonant sonic materials. Phys. B 338, 201–205 (2003)

    Article  Google Scholar 

  22. Zhu, R., Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014)

    Article  Google Scholar 

  23. Pai, P.F., Peng, H., Jiang, S.: Acoustic metamaterial beams based on multi-frequency vibration absorbers. Int. J. Mech. Sci. 79, 195–205 (2014)

    Article  Google Scholar 

  24. Chen, H., Li, X.P., Chen, Y.Y., Huang, G.L.: Wave propagation and absorption of sandwich beams containing interior dissipative multi-resonators. Ultrasonics 76, 99–108 (2017)

    Article  Google Scholar 

  25. Chen, J.S., Sharma, B., Sun, C.T.: Dynamic behaviour of sandwich structure containing spring-mass resonators. Compos. Struct. 93, 2120–2125 (2011)

    Article  Google Scholar 

  26. Chen, J.S., Sun, C.T.: Reducing vibration of sandwich structures using antiresonance frequencies. Compos. Struct. 94, 2819–2826 (2012)

    Article  Google Scholar 

  27. Cveticanin, L., Zukovic, M.: Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems. Commun. Nonlin. Sci. Numer. Simul. 51, 89–104 (2017)

    Article  MathSciNet  Google Scholar 

  28. Hill, T.L., Cammarano, S.A., Neild, S.A., Wagg, D.J.: Out-of-unison resonance in weakly nonlinear coupled oscillators. Proc. R. Soc. A 471, 20140659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cveticanin, L.: A solution procedure based on the Ateb function for a two-degree-of-freedom oscillator. J. Sound Vib. 346(1), 298–313 (2015)

    Article  Google Scholar 

  30. Peng, H., Pai, P.F.: Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int. J. Mech. Sci. 89, 350–361 (2014)

    Article  Google Scholar 

  31. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 463, 855–880 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cveticanin, L., Pogany, T.: Oscillator with a sum of non-integer order non-linearities. J. Appl. Math. (2012). https://doi.org/10.1155/2012/649050

  33. Droniuk, I., Nazarkevich, M.: Modeling nonlinear oscillatory system under disturbance by means of Ateb-functions for the Internet in T. In: Proceeding of the 6th International Working Conference on Performance Modeling and Evaluation of Heterogeneous Networks HET-NETs Poland Zakopane, pp. 325–334 (2010)

  34. Rosenberg, R.M.: On non-linear vibration of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)

    Article  Google Scholar 

  35. Cveticanin, L. (ed.): Pure nonlinear oscillator. In: Strong Nonlinear Oscillators, Mathematical Engineering, pp. 17–49. Springer, Berlin (2018)

  36. Cveticanin, L., Kovacic, I.: Exact solutions for the response of purely nonlinear oscillators: overview. J. Serbian Soc. Comput. Mech. 10(1), 116–134 (2016)

    Article  Google Scholar 

  37. Martinsson, P.G., Movchan, A.B.: Vibrations of lattice structures and phononic band gaps. Q. J. Mech. Appl. Math. 56, 45–64 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, S., Park, Y.S., Li, J., Lu, X., Zhang, E., Zhang, X.: Negative refractive index in chiral metamaterial. Phys. Rev. Lett. 102(2), 023901 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This article is based upon work from COST Action DENORMS—CA15125, supported by COST (European Cooperation in Science and Technology. The investigation has been supported by the Ministry of Science of Serbia (Proj. Nos. ON174028 and IT41007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cveticanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cveticanin, L., Zukovic, M. & Cveticanin, D. Influence of nonlinear subunits on the resonance frequency band gaps of acoustic metamaterial. Nonlinear Dyn 93, 1341–1351 (2018). https://doi.org/10.1007/s11071-018-4263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4263-5

Keywords

Navigation