Skip to main content
Log in

Nonlinear characterization of the rotor-bearing system with the oil-film and unbalance forces considering the effect of the oil-film temperature

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear phenomena of the rotor-bearing systems, i.e., the oil whirl, oil whip, quenching and pulling out, due to the oil-film temperature are not yet clear. To characterize these phenomena, a mathematical model of the rotor-bearing system is proposed to consider the effect of the oil-film temperature using the revised Walther empirical equation. Bifurcation diagram, cascade spectrum, time history, phase portrait, power spectrum and Poincaré section are employed to investigate the impacts of the rotational speed, oil-film temperature and rotor eccentricity on the stability of the rotor-bearing system. As the rotational speed increases, the system becomes unstable due to the oil whirl/whip. The oil whirl appears at the medium rotational speeds. In the middle of such speed range, it is suppressed by the synchronous vibration. Quenching and pulling out occur at the thresholds and end of the suppression, respectively. The oil-whirl range of the rotational speed increases with the oil-film temperature. Due to the existence of the oil whirl, the system undergoes period-2, period-3, period-4, period-5, period-6, period-8, quasi-periodic and chaotic motions. At the high rotational speeds, the oil whirl is replaced by the oil whip. The synchronous vibration of the bearing is suppressed as long as the oil whip appears. The oil whip dominates the system and leads to the severe vibrations. The oil whip range of the oil-film temperature increases with the rotational speed. The rotor eccentricity is prone to increase the stability of the system due to the fact that increasing synchronous vibration suppresses the oil whirl/whip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. He, H., Jing, J.: Modified oil film force model for investigating motion characteristics of rotor-bearing system. J. Vib. Control 22(3), 1–13 (2014)

    Google Scholar 

  2. Holmes, A.G., Ettles, C.M.M.: The aperiodic behavior of a rigid shaft in short journal bearings. Int. J. Numer. Methods Eng. 12(4), 695–702 (1978)

    Article  MATH  Google Scholar 

  3. Zheng, T., Hasebe, N.: Nonlinear dynamic behaviors of a complex rotor-bearing system. J. Appl. Mech. 67(3), 485–495 (2000)

    Article  MATH  Google Scholar 

  4. Adiletta, G., Guido, A.R., Rossi, C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10(3), 251–269 (1996)

    Article  Google Scholar 

  5. Cui, Y., Liu, Z., Wang, Y., Ye, J.: Nonlinear dynamic of a geared rotor system with nonlinear oil film force and nonlinear mesh force. J. Vib. Acoust. 134(4), 1313–1320 (2012)

    Article  Google Scholar 

  6. Jing, J., Meng, G., Sun, Y., Xia, S.: On the oil-whipping of a rotor-bearing system by a continuum model. Appl. Math. Model. 29(5), 461–475 (2005)

    Article  MATH  Google Scholar 

  7. Muszynska, A.: Whirl and whip rotor/bearing stability problems. J. Sound Vib. 110(3), 443–462 (1986)

    Article  Google Scholar 

  8. Hu, A., Hou, L., Xiang, L.: Dynamic simulation and experimental study of an asymmetric double-disk rotor-bearing system with rub-impact and oil-film instability. Nonlinear Dyn. 84(2), 641–659 (2016)

    Article  Google Scholar 

  9. Rho, B., Kim, K.W.: A study of the dynamic characteristics of synchronously controlled hydrodynamic journal bearings. Tribol. Int. 35(5), 339–345 (2002)

    Article  Google Scholar 

  10. EI-Shafei, A., Tawfick, S.H., Raafat, M.S., Aziz, G.M.: Some experiments on oil-whirl and oil-whip. J. Eng. Gas Turbine Power 129(1), 144–153 (2007)

    Article  Google Scholar 

  11. Chang-jian, C., Chen, C.: Chaos and bifurcation of a flexible rotor supported by porous squeeze couple stress fluid film journal bearings with non-linear suspension. Chaos Solition Fractals. 35(2), 358–375 (2008)

    Article  Google Scholar 

  12. Schweizer, B., Sievert, M.: Nonlinear oscillations of automotive turbocharger turbines. J. Sound Vib. 321(3), 955–975 (2009)

    Article  Google Scholar 

  13. Gjika, K., San Andrés, L., Larue, G.D.: Nonlinear dynamics behavior of turbochanger rotor-bearing systems with hydrodynamic oil film and squeeze film damper in series: prediction and experiment. J. Comput. Nonlinear Dyn. 5(4), 2040–2049 (2010)

    Article  Google Scholar 

  14. Tong, X., Palazzolo, A., Suh, J.: Rotordynamic Morton effect simulation with transient, thermal shaft bow. J. Tribol. 138(3), 031705 (2016)

    Article  Google Scholar 

  15. Tong, X., Palazzolo, A.: Measurement and prediction of the journal circumferential temperature distribution for the rotordynamic Morton effect. J. Tribol. 140(3), 031702 (2017)

    Article  Google Scholar 

  16. Valipour, M.: Increasing irrigation efficiency by management strategies: cutback and surge irrigation. J. Agric. Biol. Sci. 8(1), 35–43 (2013)

    Google Scholar 

  17. Valipour, M.: How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations. Agriculture 6(4), 53 (2016)

    Article  Google Scholar 

  18. Valipour, M., Montazar, A.: An evaluation of SWDC and WinSRFT models to optimize of infiltration parameters in furrow irrigation. Am. J. Sci. Res. 69, 128–142 (2012)

    Google Scholar 

  19. Valipour, M.: Ability of Box–Jenkins models to estimate of reference potential evapotranspiration (a case study: Mehrabad Synoptic Station, Tehran, Iran). IOSR J. Agric. Vet. Sci. (IOSR-JAVS) 1, 1–11 (2012)

    Article  Google Scholar 

  20. Valipour, M.: Application of new mass transfer formula for computation of evapotranspiration. J. Appl. Water Eng. Res. 2(1), 33–46 (2014)

    Article  MathSciNet  Google Scholar 

  21. Seeton, C.J.: Viscosity–temperature correlation for liquids. Tribol. Lett. 22(1), 67–78 (2006)

    Article  Google Scholar 

  22. Knežević, D., Savić, V.: Mathematical modeling of changing of dynamic viscosity, as a function of temperature and peressure, of mineral oils for hydraulic system. Mech. Eng. 4(1), 27–34 (2006)

    Google Scholar 

  23. Genteno, G., Sánchez-Reyna, G., Ancheyta, J., Muñoz, J.A.D., Cardona, N.: Testing various mixing rules for calculation of viscosity of petroleum blends. Fuel 90(12), 3561–3570 (2011)

    Article  Google Scholar 

  24. Szeri, A.Z.: Fluid Film Lubrication. Cambridge University Press, Oxford (2011)

    MATH  Google Scholar 

  25. Matthew, D., Brouwer, D., Lokesh, A., Sadeghi, F.: High temperature dynamic viscosity sensor for engine oil applications. Sens. Actuators. A Phys. 173(1), 102–107 (2012)

    Article  Google Scholar 

  26. DuPont\(^{\rm {TM}}\) Krytox\(^{\textregistered }\) Aerospace Grade Oils and Greases. http://www.krytox.com/

  27. Vlajic, N., Liu, X., Karki, H., Balachandran, B.: Torsional oscillations of a rotor with continuous stator contact. Int. J. Mech. Sci. 83, 65–75 (2014)

    Article  Google Scholar 

  28. Vlajic, N., Champneys, A.R., Balachandran, B.: Nonlinear dynamics of a Jeffcott rotor with torsional deformations and rotor–stator contact. Int. J. Nonlinear Mech. 92, 102–110 (2017)

    Article  Google Scholar 

  29. Nayfeh, A.H., Mook, D.M.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  30. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China No. 51339005, China Postdoctoral Science Foundation Grant Nos. 2016M601421 and 2017M610202, and National Defense Key Laboratory Fund of Harbin Institute of Technology Grant No. HIT.KLOF.2016.072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimiao Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Yan, Z., Tan, T. et al. Nonlinear characterization of the rotor-bearing system with the oil-film and unbalance forces considering the effect of the oil-film temperature. Nonlinear Dyn 92, 1119–1145 (2018). https://doi.org/10.1007/s11071-018-4113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4113-5

Keywords

Navigation