Skip to main content
Log in

A construction of new exact periodic wave and solitary wave solutions for the 2D Ginzburg–Landau equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Using a uniform algebraic method, new exact solitary wave solutions and periodic wave solutions for 2D Ginzburg–Landau equation are obtained. Moreover, three-dimensional and two-dimensional graphics of some solutions have been plotted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartuccelli, M., Constantin, P., Doering, C.R., Gibbon, J.D., Gisselfält, M.: Hard turbulence in a finite-dimensional dynamical system. Phys. Lett. A. 142, 349–356 (1989)

    Article  MathSciNet  Google Scholar 

  3. Stewartson, K., Stuart, J.T.: A nonlinear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48, 529–545 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Newell, A.C., Whitehead, J.A.: Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279–303 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  5. Newell, A.C., Whitehead, J.A.: Review of the finite bandwidth concept. In: Leipholz, H. (ed.) Instability of Continuous Systems, pp. 279–303. Springer, Berlin (1971)

    Google Scholar 

  6. Segel, L.A.: Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38, 203–224 (1969)

    Article  MATH  Google Scholar 

  7. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68, 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  8. Choudhury, S.: Bifurcations and strongly amplitude-modulated pulses of the complex Ginzburg–Landau equation. In: Dissipative Solitons, Lecture Notes in Physics, vol. 661, pp. 429–443. Springer, Berlin (2005)

  9. Doering, C., Gibbon, J., Holm, D., Nicolaenko, B.: Low-dimensional behavior in the complex Ginzburg–Landau equation. Nonlinearity 1, 279–309 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma, T., Park, J., Wang, S.: Dynamic bifurcation of the Ginzburg–Landau equation. SIAM J. Appl. Dyn. Syst. 3, 620–635 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Park, J.: Bifurcation and stability of the generalized complex Ginzburg–Landau equation. Pure Appl. Anal. 7(5), 1237–1253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doelman, A.: Traveling waves in the complex Ginzburg–Landau equation. J. Nonlinear Sci. 3, 225–266 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tang, Y.: Numerical simulations of periodic travelling waves to a generalized Ginzburg–Landau equation. Appl. Math. Comput. 165, 155–161 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wazwaz, A.: Exact Explicit and implicit solutions for the one-dimensional cubic and quintic complex Ginzburg–Landau equations. Appl. Math. Lett. 19, 1007–1012 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhong, Penghong, Yang, Ronghui, Yang, Ganshan: Exact periodic and blow up solutions for 2D Ginzburg–Landau equation. Phys. Lett. A 373, 19–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, W.Y., Yu, Y.J., Chen, L.D.: Variational principles for Ginzburg–Landau equation by He’s semi-inverse method. Chaos Soliton. Fract. 33, 1801–1803 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, J.L., Wang, M.L., Gao, K.Q.: Exact solutions of generalized Zakharov and Ginzburg–Landau equations. Chaos Soliton Fract. 32, 1877–1886 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mancas, S.C., Choudhury, S.R.: Traveling wave trains in the complex cubic-quintic Ginzburg–Landau equation. Chaos Soliton. Fract. 28, 834–843 (2006)

    Article  MATH  Google Scholar 

  19. Mancas, S.C., Choudhury, S.R.: Bifurcations and competing coherent structures in the cubic-quintic Ginzburg–Landau equation I: plane wave (CW) solutions. Chaos Soliton Fract. 27, 1256–1271 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mortazavi, M., Mirzazadeh, M.: Some new exact traveling wave solutions one dimensional modified complex Ginzburg–Landau equation. Comput. Methods Differ. Equ. 3(2), 70–86 (2015)

    MathSciNet  Google Scholar 

  21. Bekir, A., El Achab, A.: Exact solutions of the 2D Ginzburg–Landau equation by the first integral method. Comput. Methods Differ. Equ. 2, 63–70 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Mirzazadeh, M., et al.: Optical solitons with complex Ginzburg–Landau equation. Nonlinear Dyn. 85(2), 1979–2016 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaplan, M., Bekir, A., Akbulut, A.: A generalized Kudryashov method to some nonlinear evolution equations in mathematical physics. Nonlinear Dyn. 85, 2843–2850 (2016)

    Article  MathSciNet  Google Scholar 

  24. Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80(1–2), 387–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mirzazadeh, M., Eslami, M., Biswas, A.: Soliton solutions of the generalized Klein–Gordon equation by using \(\frac{G^{\prime }}{G}\)-expansion method. Comput. Appl. Math. 33(3), 831–839 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bekir, A., Ayhan, B., Naci Özer, M.: Numerical simulations of periodic travelling waves to a generalized Ginzburg–Landau equation. Chin. Phys. B 22(1), 010202 (2013)

    Article  Google Scholar 

  27. Bekir, A., Ayhan, B., Naci Özer, M.: New exact travelling wave solutions of nonlinear physical models. Chaos Solitons Fract. 41(4), 1733–1739 (2009)

    Article  MathSciNet  Google Scholar 

  28. Çevikel, A.C., Bekir, A., Akar, M., San, S.: A procedure to construct exact solutions of nonlinear evolution equations. Pramana: J. Phys. 79(3), 337–344 (2012)

    Article  Google Scholar 

  29. Triki, H., Mirzazadeh, M., Bhrawy, A.H., Razborova, P., Biswas, A.: Solitons and other solutions to long-wave short-wave interaction equation. Rom. J. Phys. 60(1–2), 72–86 (2015)

    Google Scholar 

  30. El Achab, A.: Constructing of exact solutions to the nonlinear Schrödinger equation (NLSE) with power-law nonlinearity by the Weierstrass elliptic function method. Optik: Int. J. Light Electron Opt. 127(3), 1229–1232 (2016)

    Article  Google Scholar 

  31. Guo-cheng, Wu, Tie-cheng, Xia: A new method for constructing soliton solutions and periodic solutions of nonlinear evolution equations. Phys. Lett. A 372, 604–609 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo-cheng, Wu, Tie-cheng, Xia: A new method for constructing soliton solutions to differential-difference equation with symbolic computation. Chaos Solitons Fract. 39, 2245–2248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jun-Min, W., Jie, J.: Algebraic method for constructing exact discrete soliton solutions of toda and mKdV lattices. Commun. Theor. Phys. (Beijing, China) 49, 1407–1409 (2008)

    Article  MathSciNet  Google Scholar 

  34. Batool, B., Akram, G.: On the solitary wave dynamics of complex Ginzburg–Landau equation with cubic nonlinearity. Opt. Quant. Electron. 49, 1 (2017)

    Article  Google Scholar 

  35. Davey, A., Stewartson, K.: On three-dimensional packets of surfaces waves. Proc. R. Soc. Lond. Ser. A 338, 101–110 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelfattah El Achab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Achab, A., Amine, A. A construction of new exact periodic wave and solitary wave solutions for the 2D Ginzburg–Landau equation. Nonlinear Dyn 91, 995–999 (2018). https://doi.org/10.1007/s11071-017-3924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3924-0

Keywords

Mathematics Subject Classification

Navigation