Skip to main content
Log in

An asymptotic method for quasi-integrable Hamiltonian system with multi-time-delayed feedback controls under combined Gaussian and Poisson white noises

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present paper, we consider an approximate approach for predicting the responses of the quasi-integrable Hamiltonian system with multi-time-delayed feedback control under combined Gaussian and Poisson white noise excitations. Two-step approximation is taken here to obtain the responses of such system. First, based on the property of the system solution, the time-delayed system state variables are approximated by using the system state variables without time delay. After this approximation, the system is converted to the one without time delay but with delay time as parameters. Then, stochastic averaging method for quasi-integrable Hamiltonian system under combined Gaussian and Poisson white noises is applied to simplify the converted system to obtain the averaged stochastic integro-differential equations and generalized Fokker–Planck–Kolmogorov equations for both non-resonant and resonant cases. Finally, two examples are worked out to show the detailed procedure of proposed method for the illustrative purpose. And the influences of the time delay on the responses of the systems are also discussed. In addition, the validity of the results obtained by present method is verified by Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gu, K., Niculescu, S.-I.: Survey on recent results in the stability and control of time-delay systems. J. Dyn. Syst. Meas. Control 125(2), 158–165 (2003)

    Article  Google Scholar 

  2. Richard, J.-P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Sun, Z., et al.: Delay-induced stochastic bifurcations in a bistable system under white noise. Chaos 25(8), 083102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Malek-Zavarei, M., Jamshidi, M.: Time-Delay Systems: Analysis, Optimization and Applications. Elsevier Science Inc., North Holland (1987)

    MATH  Google Scholar 

  5. Stépán, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Scientific & Technical, Harlow (1989)

    MATH  Google Scholar 

  6. Kuo, B.C.: Automatic Control Systems. Prentice Hall PTR, Upper Saddle River (1987)

    Google Scholar 

  7. Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Berlin (2013)

    Google Scholar 

  8. Agrawal, A., Yang, J.: Effect of fixed time delay on stability and performance of actively controlled civil engineering structures. Earthq. Eng. Struct. Dyn. 26(11), 1169–1185 (1997)

    Article  Google Scholar 

  9. Pu, J.P.: Time-delay compensation in active control of structures. J. Eng. Mech. ASCE 124(9), 1018–1028 (1998)

    Article  Google Scholar 

  10. Atay, F.M.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grigoriu, M.: Control of time delay linear systems with Gaussian white noise. Probab. Eng. Mech. 12(2), 89–96 (1997)

    Article  Google Scholar 

  12. Di Paola, M., Pirrotta, A.: Time delay induced effects on control of linear systems under random excitation. Probab. Eng. Mech. 16(1), 43–51 (2001)

    Article  Google Scholar 

  13. Bilello, C., Di Paola, M., Pirrotta, A.: Time delay induced effects on control of non-linear systems under random excitation. Meccanica 37(1–2), 207–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cai, G.P., Huang, J.Z.: Optimal control method for seismically excited building structures with time-delay in control. J. Eng. Mech. ASCE 128(6), 602–612 (2002)

    Article  Google Scholar 

  15. Xu, S.Y., Lam, J.: Robust H-infinity control for uncertain discrete-time-delay fuzzy systems via output feedback controllers. IEEE Trans. Fuzzy Syst. 13(1), 82–93 (2005)

    Article  Google Scholar 

  16. Liu, Z., Zhu, W.: Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control. J. Sound Vib. 299(1), 178–195 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, Z., Zhu, W.: Asymptotic Lyapunov stability with probability one of quasi-integrable Hamiltonian systems with delayed feedback control. Automatica 44(7), 1923–1928 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feng, C.S., Wu, Y.J., Zhu, W.Q.: Response of Duffing system with delayed feedback control under combined harmonic and real noise excitations. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2542–2550 (2009)

    Article  Google Scholar 

  19. Feng, C.S., Wu, Y.J., Zhu, W.Q.: First-passage failure of strongly non-linear oscillators with time-delayed feedback control under combined harmonic and wide-band noise excitations. Int. J. Non-linear Mech. 44(3), 269–275 (2009)

    Article  Google Scholar 

  20. Li, X.P., et al.: Asymptotic Lyapunov stability with probability one of quasi linear systems subject to multi-time-delayed feedback control and wide-band parametric random excitation. Arch. Appl. Mech. 79(11), 1051–1061 (2009)

    Article  MATH  Google Scholar 

  21. Hanson, F.B.: Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  22. Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer, Berlin (2005)

  23. Jia, W., Zhu, W.: Stochastic averaging of quasi-integrable and non-resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations. Nonlinear Dyn. 76(2), 1271–1289 (2014)

  24. Jia, W., et al.: Stochastic averaging of quasi-integrable and resonant Hamiltonian systems under combined Gaussian and Poisson white noise excitations. J. Appl. Mech. Trans. ASME 81(4), 041009 (2014)

    Article  Google Scholar 

  25. Liu, W.Y., Zhu, W.Q., Jia, W.T.: Stochastic stability of quasi-integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises. Int. J. Non-linear Mech. 58, 191–198 (2014)

    Article  MATH  Google Scholar 

  26. Liu, W.Y., et al.: Stochastic stability of quasi-partially integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises. Nonlinear Dyn. 77(4), 1721–1735 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grigoriu, M.: Response of dynamic systems to Poisson white noise. J. Sound Vib. 195(3), 375–389 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zhu, W.: Nonlinear stochastic dynamics and control in Hamiltonian formulation. Appl. Mech. Rev. 59, 230 (2006)

    Article  Google Scholar 

  29. Zhu, W., Huang, Z., Yang, Y.: Stochastic averaging of quasi-integrable Hamiltonian systems. J. Appl. Mech. 64(4), 975–984 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Di Paola, M., Vasta, M.: Stochastic integro-differential and differential equations of non-linear systems excited by parametric Poisson pulses. Int. J. Non-linear Mech. 32(5), 855–862 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhu, W., Yang, Y.: Stochastic averaging of quasi-nonintegrable-Hamiltonian systems. J. Appl. Mech. 64(1), 157–164 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wu, Y.J., Zhu, W.Q.: Stochastic averaging of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations. J. Vib. Acoust. Trans. ASME 130(5), 051004 (2008)

    Article  Google Scholar 

  33. Gan, C., Zhu, W.: First-passage failure of quasi-non-integrable-Hamiltonian systems. Int. J. Non-linear Mech. 36(2), 209–220 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China under Grants Nos. 11502199, 11372262, 11572247 and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wantao Jia or Yong Xu.

Appendices

Appendix A

The coefficients of averaged GFPK equation for the non-resonant case:

$$\begin{aligned}&\bar{{A}}_{r_1 } \left( \mathbf{I} \right) =\frac{\varepsilon ^{2}}{\left( {2\pi } \right) ^{n}}\int _0^{2\pi } \left( -\sum _{i=1}^n \sum _{j=1}^n \frac{\partial H}{\partial p_j }\frac{\partial I_{r_1 } }{\partial p_i }\right. \nonumber \\&\quad \left. +\frac{1}{2}\sum _{i=1}^n {\sum _{j=1}^n {\sum _{k=1}^{n_g } {\sigma _{i,k} \sigma _{j,k} } } } \frac{\partial ^{2}I_{r_1 } }{\partial p_i \partial p_j } \right) \mathrm{d}{\varvec{\uptheta }} \nonumber \\&\quad +\sum _{k=2}^u {\varepsilon ^{k}\sum _{l=1}^{n_p } {\frac{\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n}}\int _0^{2\pi } {A_{r;k;l} \mathrm{d}{\varvec{\uptheta }}} } } , \end{aligned}$$
(47)
$$\begin{aligned}&\bar{{A}}_{r_1 ,r_2 } \left( \mathbf{I} \right) =\frac{\varepsilon ^{2}}{\left( {2\pi } \right) ^{n}}\int _0^{2\pi } \nonumber \\&\quad {\left( {\sum _{i=1}^n {\sum _{j=1}^n {\sum _{k=1}^{n_g } {\frac{\partial I_{r_1 } }{\partial p_i }\frac{\partial I_{r_2 } }{\partial p_j }\sigma _{i,k} \sigma _{j,k} } } } } \right) } \mathrm{d}{\varvec{\uptheta }} \nonumber \\&\quad +\sum _{k=2}^u {\varepsilon ^{k}\sum _{l=1}^{n_p } {\frac{\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n}}} } \int _0^{2\pi }\nonumber \\&\quad {\left( {\sum _{k_1 +k_2 =k} {A_{r_1 ;k_1 ;l} A_{r_2 ;k_2 ;l} } } \right) \mathrm{d}{\varvec{\uptheta }}} , \end{aligned}$$
(48)
$$\begin{aligned}&\bar{{A}}_{r_1 ,r_2 ,\ldots ,r_j } \left( \mathbf{I} \right) =\sum _{k=j}^u \varepsilon ^{k}\sum _{l=1}^{n_p } \frac{\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n}}\int _0^{2\pi }\nonumber \\&\quad {\left( {\sum _{k_1 +k_2 +\cdots +k_j =k} {A_{r_1 ;k_1 ;l} A_{r_2 ;k_2 ;l} } \cdots A _{r_j ;k_j ;l} } \right) \mathrm{d}{\varvec{\uptheta }}} , \end{aligned}$$
(49)

where\(A_{r;k;l} =A_{r;k;l} \left( {\mathbf{q},\mathbf{p}} \right) \) given in Ref. [23], \(\mathbf{I}=[I_1 ,I_2 ,\ldots ,I_n ]^{T}, {\varvec{\uptheta }}=[\theta _1 ,\theta _2 ,\ldots ,\theta _n ]^{T}\) and \(\int _0^{2\pi } {\left[ {\cdot } \right] \mathrm{d}{\varvec{\uptheta }}} =\int _0^{2\pi } {\int _0^{2\pi } {\cdots \int _0^{2\pi } {\left[ {\cdot } \right] \mathrm{d}\theta _1 \mathrm{d}\theta _2 \cdots \mathrm{d}\theta _n } } } \) denotes the n-fold integral.

Appendix B

The coefficients of averaged GFPK equation for resonant case :

$$\begin{aligned} \bar{{A}}_{r_1 } \left( {\mathbf{I},{\varvec{\uppsi }}} \right)= & {} \frac{\varepsilon ^{2}}{\left( {2\pi } \right) ^{n-\alpha }}\int _0^{2\pi } \left( -\sum _{i,j=1}^n {m_{ij} \frac{\partial H}{\partial p_j }\frac{\partial I_{r_1 } }{\partial p_i }}\right. \nonumber \\&\left. +\,\frac{1}{2}\sum _{i,j=1}^n {\sum _{k=1}^{n_g } {\sigma _{ik} \sigma _{jk} \frac{\partial ^{2}I_{r_1 } }{\partial p_i \partial p_j }} } \right) \mathrm{d}{\varvec{\uptheta }}_1 \nonumber \\&+\,\sum _{k=1}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}\int _0^{2\pi } {A_{r_1 ;k;l} \mathrm{d}{\varvec{\uptheta }}_1 } } } \nonumber \\ \end{aligned}$$
(50)
$$\begin{aligned}&\bar{{A}}_{n+v_1 } \left( {\mathbf{I},{\varvec{\uppsi }}} \right) =\frac{1}{\left( {2\pi } \right) ^{n-\alpha }}\int _0^{2\pi } \left[ \mathrm{O}\left( {\varepsilon ^{2}} \right) \right. \nonumber \\&\quad \left. +\,\varepsilon ^{2}\left( -\sum _{i,j=1}^n {m_{ij} \frac{\partial H}{\partial p_j }\frac{\partial \psi _{v_1 } }{\partial p_i }}\right. \right. \nonumber \\&\quad \left. \left. +\,\frac{1}{2}\sum _{i,j=1}^n {\sum _{k=1}^{n_g } {\sigma _{ik} \sigma _{jk} \frac{\partial ^{2}\psi _{v_1 } }{\partial p_i \partial p_j }} } \right) \right] \mathrm{d}{\varvec{\uptheta }}_1 \nonumber \\&\quad +\,\sum _{k=1}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}\int _0^{2\pi } {C_{v_1 ;k;l} \mathrm{d}{\varvec{\uptheta }}_1 } } } \end{aligned}$$
(51)
$$\begin{aligned}&\bar{{A}}_{r_1 ,r_2 } \left( {\mathbf{I},{\varvec{\uppsi }}} \right) \nonumber \\&\quad =\frac{\varepsilon ^{2}}{\left( {2\pi } \right) ^{n-\alpha }}\int _0^{2\pi } {\left( {\sum _{i,j=1}^n {\sum _{k=1}^{n_g } {\frac{\partial I_{r_1 } }{\partial p_i }\frac{\partial I_{r_2 } }{\partial p_j }\sigma _{i,k} \sigma _{j,k} } } } \right) } d{\varvec{\uptheta }}_1\nonumber \\&\quad +\,\sum _{k=2}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}} } \int _0^{2\pi } {\left( {\sum _{k_1 +k_2 =k} {A_{r_1 ;k_1 ;l} A_{r_2 ;k_2 ;l} } } \right) \mathrm{d}{\varvec{\uptheta }}_1 }\nonumber \\ \end{aligned}$$
(52)
$$\begin{aligned}&{\bar{A}}_{r_1 ,n+v_1 } \left( {\mathbf{I},{\varvec{\uppsi }}} \right) =\frac{\varepsilon ^{2}}{\left( {2\pi } \right) ^{n-\alpha }}\int _0^{2\pi }\nonumber \\&\quad {\left( {\sum _{i,j=1}^n {\sum _{k=1}^{n_g } {\frac{\partial I_{r_1 } }{\partial p_i }\frac{\partial \psi _{v_1 } }{\partial p_j }\sigma _{i,k} \sigma _{j,k} } } } \right) } \mathrm{d}{\varvec{\uptheta }}_1 \nonumber \\&\quad +\,\sum _{k=2}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}} } \int _0^{2\pi } {\left( {\sum _{k_1 +k_2 =k} {A_{r_1 ;k_1 ;l} C_{v_1 ;k_2 ;l} } } \right) \mathrm{d}{\varvec{\uptheta }}_1 }\nonumber \\ \end{aligned}$$
(53)
$$\begin{aligned}&\bar{{A}}_{n+v_1 ,n+v_2 } \left( {\mathbf{I},{\varvec{\uppsi }}} \right) =\frac{\varepsilon ^{2}}{\left( {2\pi } \right) ^{n-\alpha }}\int _0^{2\pi }\nonumber \\&\quad {\left( {\sum _{i,j=1}^n {\sum _{k=1}^{n_g } {\sigma _{i,k} \sigma _{j,k} } } \frac{\partial \psi _{v_1 } }{\partial p_i }\frac{\partial \psi _{v_2 } }{\partial p_j }} \right) } \mathrm{d}{\varvec{\uptheta }}_1 \nonumber \\&\quad +\,\sum _{k=2}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}} } \int _0^{2\pi }\nonumber \\&\quad {\left( {\sum _{k_1 +k_2 =k} {C_{v_1 ;k_1 ;l} C_{v_2 ;k_2 ;l} } } \right) \mathrm{d}{\varvec{\uptheta }}_1 } \end{aligned}$$
(54)
$$\begin{aligned}&\bar{{A}}_{r_1 ,r_2 ,r_3 } \left( {\mathbf{I},{\varvec{\uppsi }}} \right) =\sum _{k=3}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}} } \int _0^{2\pi } \nonumber \\&\quad {\left( {\sum _{k_1 +k_2 +k_3 =k} {A_{r_1 ;k_1 ;l} A_{r_2 ;k_2 ;l} A_{r_3 ;k_3 ;l} } } \right) \mathrm{d}{\varvec{\uptheta }}_1} \end{aligned}$$
(55)
$$\begin{aligned}&\bar{{A}}_{r_1 ,r_2 ,n+v_1 } \left( {\mathbf{I},{\varvec{\uppsi }}} \right) \nonumber \\&\quad =\sum _{k=3}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}} } \int _0^{2\pi }\nonumber \\&\quad {\left( {\sum _{k_1 +k_2 +k_3=k} {A_{r_1 ;k_1 ;l} A_{r_2 ;k_2 ;l} C_{v_1 ;k_3 ;l} } } \right) \mathrm{d}{\varvec{\uptheta }}_1 } \end{aligned}$$
(56)
$$\begin{aligned}&\bar{{A}}_{r_1 ,n+v_1 ,n+v_2 } \left( {\mathbf{I},{\varvec{\uppsi }}} \right) \nonumber \\&\quad =\sum _{k=3}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}} } \int _0^{2\pi } \nonumber \\&\quad {\left( {\sum _{k_1 +k_2 +k_3 =k} {A_{r_1 ;k_1 ;l} C_{v_1 ;k_2 ;l} C_{v_2 ;k_3 ;l} } } \right) \mathrm{d}{\varvec{\uptheta }}_1 } \end{aligned}$$
(57)
$$\begin{aligned}&\bar{{A}}_{n+v_1 ,n+v_2 ,n+v_3 } \left( {\mathbf{I},{\varvec{\uppsi }}} \right) \nonumber \\&\quad =\sum _{k=3}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}} } \int _0^{2\pi } \nonumber \\&\quad {\left( {\sum _{k_1 +k_2 +k_3 =k} {C_{v_1 ;k_1 ;l} C_{v_2 ;k_2 ;l} C_{v_3 ;k_3 ;l} } } \right) \mathrm{d}{\varvec{\uptheta }}_1 } \end{aligned}$$
(58)
$$\begin{aligned}&\bar{{A}}_{r_1 ,\ldots r_{j-s} ,n+v_1 ,\ldots ,n+v_s } \left( {\mathbf{I},{\varvec{\uppsi }}} \right) \nonumber \\&\quad =\sum _{k=j}^u {\sum _{l=1}^{n_p } {\frac{\varepsilon ^{k}\lambda _l E[Y_l^k ]}{\left( {2\pi } \right) ^{n-\alpha }}} } \int _0^{2\pi } \nonumber \\&\quad {\left( {\sum _{k_1 +k_2 +\cdots +k_j =k} {A_{r_1 ;k_1 ;l} \cdots A_{r_s ;k_s ;l} C_{v_1 ;k_{s+1} ;l} \cdots C_{v_{j-s} ;k_j ;l} } } \right) \mathrm{d}{\varvec{\uptheta }}_1 }\nonumber \\ \end{aligned}$$
(59)
$$\begin{aligned} s=0,\ldots ,j, j=4,\ldots ,u, r_i =1,\ldots ,n; v_i =1,\ldots ,\alpha . \end{aligned}$$

where \(\mathbf{I}=\left[ {I_1 ,\ldots ,I_n } \right] ^{T}, \psi =\left[ {\psi _1 ,\ldots ,\psi _\alpha } \right] ^{T}\)and \(\int _0^{2\pi } {\left[ {\cdot } \right] } \mathrm{d}{\varvec{\uptheta }}_1 =\int _0^{2\pi } {\int _0^{2\pi } {\cdots \int _0^{2\pi } {\left[ {\cdot } \right] } } } \mathrm{d}\theta _1 \mathrm{d}\theta _2 \cdots \mathrm{d}\theta _\alpha \) is the \(n-\alpha \)-fold integral notation. The terms \(A_{r;k;l} =A_{r;k;l} \left( {\mathbf{q},\mathbf{p}} \right) \) and \(C_{r;k;l} =C_{r;k;l} \left( {\mathbf{q},\mathbf{p}} \right) \) are given in Ref. [24].

Appendix C

Substituting this solution (27) to Eq. (25) and collecting the terms of same order of \(\varepsilon \), the equations that \(p_0 , p_1 \) and \(p_2 \) satisfy are

$$\begin{aligned}&\varepsilon ^{2}:\quad 0=-\frac{\partial }{\partial I}\left( {\bar{{A}}_1 \left( I \right) p_0 } \right) +\frac{1}{2}\frac{\partial }{\partial I^{2}}\left( {\bar{{A}}_2^{(1)} \left( I \right) p_0 } \right) \end{aligned}$$
(60)
$$\begin{aligned}&\varepsilon ^{3}:\quad 0=-\frac{\partial }{\partial I}\left( {\varepsilon \bar{{A}}_1 \left( I \right) p_1 } \right) +\frac{1}{2}\frac{\partial ^{2}}{\partial I^{2}}\left( {\varepsilon \bar{{A}}_2^{(1)} \left( I \right) p_1 } \right) \end{aligned}$$
(61)
$$\begin{aligned}&\varepsilon ^{4}:\quad 0=-\frac{\partial }{\partial I}\left( {\varepsilon ^{2}\bar{{A}}_1 \left( I \right) p_2 } \right) +\frac{1}{2}\frac{\partial ^{2}}{\partial I^{2}}\left( {\varepsilon ^{2}\bar{{A}}_2^{(2)} \left( I \right) p_2 } \right) \nonumber \\&\quad \qquad \quad \quad -\frac{1}{3!}\frac{\partial ^{3}}{\partial I^{3}}\left( {\bar{{A}}_3 \left( I \right) p_0 } \right) +\frac{1}{4!}\frac{\partial ^{4}}{\partial I^{4}}\left( {\bar{{A}}_4 \left( I \right) p_0 } \right) \end{aligned}$$
(62)
$$\begin{aligned} \vdots \end{aligned}$$

where

$$\begin{aligned} \bar{{A}}_2^{(1)} \left( I \right)= & {} \varepsilon ^{2}\frac{2D+\lambda E\left[ {Y^{2}} \right] }{\omega }I;\\ \bar{{A}}_2^{(2)} \left( I \right)= & {} \varepsilon ^{4}\frac{\lambda E\left[ {Y^{4}} \right] }{4\omega ^{2}}\hbox { and }\\ \bar{{A}}_2 \left( I \right)= & {} \bar{{A}}_2^{\left( 1 \right) } \left( I \right) +\bar{{A}}_2^{\left( 2 \right) } \left( I \right) \end{aligned}$$

One can get \(p_0 , p_1 , p_2, \ldots \) by solving Eqs. (60)–(62) step by step. And, the solution (27) can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Xu, Y., Liu, Z. et al. An asymptotic method for quasi-integrable Hamiltonian system with multi-time-delayed feedback controls under combined Gaussian and Poisson white noises. Nonlinear Dyn 90, 2711–2727 (2017). https://doi.org/10.1007/s11071-017-3832-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3832-3

Keywords

Navigation