Skip to main content
Log in

Anti-disturbance fault-tolerant attitude control for satellites subject to multiple disturbances and actuator saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the problem of attitude fault tolerant control (FTC) for satellites subject to multiple disturbances and actuator faults. Due to the limitation of the physical characteristic, actuator saturation exists quite widely in practical processes. An anti-windup FTC approach based on disturbance observer is presented for satellites with actuator faults, input saturation and multiple disturbances in this paper. The multiple disturbances can be divided into an uncertain modeled disturbance and a norm-bounded equivalent disturbance. Disturbance observer and fault diagnosis observer are designed to estimate the uncertain modeled disturbance and time-varying fault, respectively. By virtue of fault accommodation and disturbance observer-based control, an anti-windup FTC strategy is designed with polytopic representation of the saturation function. Different from the previous results, disturbance rejection, fault accommodation and state feedback controller are considered as a whole for input saturation. The proposed fault-tolerant controller design can guarantee the closed-loop system to be quadratically stable with a prescribed upper bound of the cost function. Simulation results are given to show the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cao, S., Guo, L., Wen, X.: Fault tolerant control with disturbance rejection and attenuation performance for systems with multiple disturbances. Asian J. Control 13(6), 1056–1064 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, S., Zhao, Y., Qiao, J.: Adaptive fault tolerant attitude control based on a disturbance observer for satellites with multiple disturbances. Trans. Inst. Meas. Control 38(6), 722–731 (2016)

    Article  Google Scholar 

  3. Cao, S.Y., Guo, L.: Fault diagnosis with disturbance rejection performance based on disturbance observer. In: Joint 48th IEEE CDC & 28th CCC, pp. 6947–6951. Shanghai, China (2009)

  4. Cao, Y.Y., Lin, Z., Ward, D.G.: An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation. IEEE Trans. Autom. Control 47(1), 140–145 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques-Part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)

    Article  Google Scholar 

  6. Guo, L., Cao, S.Y.: Anti-Disturbance Control for Systems with Multiple Disturbances. CRC Press, Boca Raton (2013)

    Google Scholar 

  7. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  8. Hu, Q., Jiang, B., Friswell, M.I.: Robust saturated finite time output feedback attitude stabilization for rigid spacecraft. J. Guid. Control Dyn. 37(6), 1914–1929 (2014)

    Article  Google Scholar 

  9. Hu, Q.L.: Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dyn. 55(4), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, T., Lin, Z.: Control Systems with Actuator Saturation: Analysis and Design. Birkhauser, Boston (2001)

    Book  MATH  Google Scholar 

  11. Jiang, Y., Hu, Q., Ma, G.: Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Trans. 49(1), 57–69 (2010)

    Article  Google Scholar 

  12. Jin, J., Ko, S., Ryoo, C.K.: Fault tolerant control for satellites with four reaction wheels. Control Eng. Pract. 16(10), 1250–1258 (2008)

    Article  Google Scholar 

  13. Lei, F., Xu, X., Li, T., Song, G.: Attitude tracking control for mars entry vehicle via ts model with time-varying input delay. Nonlinear Dyn. 85(3), 1749–1764 (2016)

    Article  MATH  Google Scholar 

  14. Li, S., Ding, S., Li, Q.: Global set stabilisation of the spacecraft attitude using finite-time control technique. Int. J. Control 82(5), 822–836 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, S., Yang, J., Chen, W., Chen, X.: Disturbance Observer-based Control: Methods and Applications. CRC Press, Boca Raton (2014)

    Google Scholar 

  16. Li, T., Li, G., Zhao, Q.: Adaptive fault-tolerant stochastic shape control with application to particle distribution control. IEEE Trans. Syst., Man, Cybern., Syst 45(12), 1592–1604 (2015)

    Article  MathSciNet  Google Scholar 

  17. Liu, H., Guo, L.: An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. Nonlinear Dyn. 67(3), 2081–2088 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, K., Xia, Y., Fu, M.: Controller design for rigid spacecraft attitude tracking with actuator saturation. Inf. Sci. 220, 343–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, Y., Jiang, B., Tao, G., Cheng, Y.: Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedback. J. Franklin I. 351(1), 296–314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Masterson, R.A., Miller, D.W., Grogan, R.L.: Development and validation of reaction wheel disturbance models: empirical model. J. Sound Vib. 249(3), 575–598 (2002)

    Article  Google Scholar 

  21. Shen, Q., Jiang, B., Cocquempot, V.: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans. Fuzzy Syst. 22(2), 338–349 (2014)

  22. Shen, Q., Wang, D., Zhu, S., Poh, K.: Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2390–2405 (2015)

    Article  Google Scholar 

  23. Udwadia, F.E., Wanichanon, T.: Control of uncertain nonlinear multibody mechanical systems. J. Appl. Mech.-T ASME 81(4), 041,020 (2014)

    Article  Google Scholar 

  24. Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guid. Control Dyn. 37(5), 1611–1624 (2014)

    Article  Google Scholar 

  25. Wei, X., Zhang, H., Guo, L.: Saturating composite disturbance-observer-based control and \(h_\infty \) control for discrete time-delay systems with nonlinearity. Int. J. Control Autom. 7(5), 691–701 (2009)

    Article  Google Scholar 

  26. Wei, Y., Zheng, W.X., Xu, S.: Anti-disturbance control for nonlinear systems subject to input saturation via disturbance observer. Syst. Control Lett. 85, 61–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wertz, J.R.: Spacecraft Attitude Determination and Control, vol. 73. Springer, Dordrecht (2012)

    Google Scholar 

  28. Wu, L.B., Yang, G.H.: Adaptive fault-tolerant control of a class of nonaffine nonlinear systems with mismatched parameter uncertainties and disturbances. Nonlinear Dyn. 82(3), 1281–1291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control. Syst. Technol. 20(6), 1605–1612 (2012)

    Article  Google Scholar 

  30. Yang, C.D., Sun, Y.P.: Mixed \(H_2/H_\infty \) state-feedback design for microsatellite attitude control. Control Eng. Pract. 10(9), 951–970 (2002)

    Article  Google Scholar 

  31. Yang, J., Li, S.H., et al.: Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles. IEEE Trans. Aerosp. Electron. Syst. 49(2), 1263–1275 (2013)

    Article  Google Scholar 

  32. Yin, S., Xiao, B., Ding, S.X., Zhou, D.: A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans. Ind. Electron. 63(5), 3311–3320 (2016)

    Article  Google Scholar 

  33. Zaccarian, L., Teel, A.R.: Modern Anti-windup Synthesis: Control Augmentation for Actuator Saturation. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  34. Zhang, R., Qiao, J., Li, T., Guo, L.: Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlinear Dyn. 76(3), 1753–1760 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, Y.M., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32, 229–252 (2008)

    Article  Google Scholar 

  36. Zhou, B., Gao, H., Lin, Z., Duan, G.: Stabilization of linear systems with distributed input delay and input saturation. Automatica 48(5), 712–724 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, Y., Qiao, J., Guo, L., Han, C.: Observer-based attitude control for flexible spacecrafts under actuator fault and actuator saturation. In: The 27th Chinese Control and Decision Conference (2015 CCDC), pp. 508–513. Qingdao (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyin Cao.

Additional information

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 61203195, 61473249).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Zhao, Y. Anti-disturbance fault-tolerant attitude control for satellites subject to multiple disturbances and actuator saturation. Nonlinear Dyn 89, 2657–2667 (2017). https://doi.org/10.1007/s11071-017-3614-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3614-y

Keywords

Navigation