Skip to main content
Log in

A hyperchaotic time-delayed system with single-humped nonlinearity: theory and experiment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We propose a time-delayed hyperchaotic system with a single-humped nonlinearity that can be implemented in a controlled way using off-the-shelf electronic circuit elements. The proposed system is simple in design yet complex in its dynamical behavior. A rigorous stability analysis reveals that the system gives birth to a limit cycle via a supercritical Hopf bifurcation and also theoretical analysis predicts the occurrence of higher periodic cycles with increasing time delay. The complexity of the system is characterized by phase plane plots, bifurcation diagram and Lyapunov exponent spectrum. The system is implemented in an electronic circuit, and a data acquisition system is used to control the relevant circuit parameter to visualize the experimental bifurcation diagram. Experimental observations qualitatively support the analytical and numerical results. We believe that the present study will improve our understanding of the dynamical behavior of time-delayed systems with single-humped nonlinearity, which are very much relevant in physiological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control system. Science 197, 287–289 (1977)

    Article  Google Scholar 

  2. Ikeda, K., Daido, H., Akimoto, O.: Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45, 709–712 (1980)

    Article  Google Scholar 

  3. Wei, J., Yu, C.: Stability and bifurcation analysis in the cross-coupled laser model with delay. Nonlinear Dyn. 66, 29–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yongzhen, P., Shuping, L., Changguo, L.: Effect of delay on a predatorprey model with parasitic infection. Nonlinear Dyn. 63, 311–321 (2011)

    Article  Google Scholar 

  5. Boutle, I., Taylor, R.H.S., Romer, R.A.: El Niño and the delayed action oscillator. Am. J. Phys. 75, 15–24 (2007)

    Article  MATH  Google Scholar 

  6. Pei, L., Wang, Q., Shi, H.: Bifurcation dynamics of the modified physiological model of artificial pancreas with insulin secretion delay. Nonlinear Dyn. 63, 417–427 (2011)

    Article  MathSciNet  Google Scholar 

  7. Liao, X., Guo, S., Li, C.: Stability and bifurcation analysis in tri-neuron model with time delay. Nonlinear Dyn. 49, 319–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Le, L.B., Konishi, K., Hara, N.: Design and experimental verification of multiple delay feedback control for time-delay nonlinear oscillators. Nonlinear Dyn. 67, 1407–1418 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Namajunas, A., Pyragas, K., Tamaševičius, A.: An electronic analog of the Mackey–Glass system. Phys. Lett. A 201, 42–46 (1995)

    Article  Google Scholar 

  11. Uçar, A.: On the chaotic behaviour of a prototype delayed dynamical system. Chaos Solitons Fractals 16, 187–194 (2003)

    Article  MATH  Google Scholar 

  12. Sprott, J.C.: A simple chaotic delay differential equation. Phys. Lett. A 366, 397–402 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, H., He, Z.: Chaotic behavior in first-order autonomous continuous-time systems with delay. IEEE Trans. Circuits Syst. I Fundam. Theor. Appl. 43, 700–702 (1996)

    Article  Google Scholar 

  14. Lu, H., He, Y., He, Z.: A chaos-generator: analysis of complex dynamics of a cell equation in delayed cellular neural networks. IEEE Trans. Circuits Syst. I Fundam. Theor. Appl. 45, 178–181 (1998)

    Article  Google Scholar 

  15. Mykolaitis, G., Tamaševičius, A., Čenys, A., Bumeliené, S., Anagnostopoulos, A.N., Kalkan, N.: Very high and ultrahigh frequency hyperchaotic oscillators with delay line. Chaos Solitons Fractals 17, 343 (2003)

    Article  MATH  Google Scholar 

  16. Tamaševičius, A., Mykolaitis, G., Bumeliené, S.: Delayed feedback chaotic oscillator with improved spectral characteristics. Electron. Lett. 42, 736–737 (2006)

    Article  Google Scholar 

  17. Tamaševičius, A., Pyragine, T., Meskauskas, M.: Two scroll attractor in a delay dynamical system. Int. J. Bifurc. Chaos 17(10), 3455–3460 (2007)

  18. Yalçin, M.E., Ozoguz, S.: n-scroll chaotic attractors from a first-order time-delay differential equation. Chaos 17, 033112 (2007)

    Article  MATH  Google Scholar 

  19. Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: Design of time-delay chaotic electronic circuits. IEEE Trans. Circuits Syst. I(58), 1888–1896 (2011)

    Article  MathSciNet  Google Scholar 

  20. Pham, V.-T., Fortuna, L., Frasca, M.: Implementation of chaotic circuits with a digital time-delay block. Nonlinear Dyn. 67, 345–355 (2012)

    Article  Google Scholar 

  21. Banerjee, T., Biswas, D., Sarkar, B.C.: Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn. 70, 721–734 (2012)

    Article  MathSciNet  Google Scholar 

  22. Banerjee, T., Biswas, D.: Theory and experiment of a first-order chaotic delay dynamical system. Int. J. Bifurc. Chaos 23(6), 1330020 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Biswas, D., Banerjee, T.: A simple chaotic and hyperchaotic time-delay system: design and electronic circuit implementation. Nonlinear Dyn. 83, 2331–2347 (2016)

    Article  MathSciNet  Google Scholar 

  24. Peng, J.H., Ding, E.J., Ding, M., Yang, W.: Synchronizing hyperchaos with a scalar transmitted signal. Phys. Rev. Lett. 76, 904–907 (1996)

    Article  Google Scholar 

  25. Muthukumar, P., Balasubramaniam, P.: Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dyn. 74, 1169–1181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chain, Kai, Kuo, Wen-Chung: A new digital signature scheme based on chaotic maps. Nonlinear Dyn. 74, 1003–1012 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Özkaynak, F.: Cryptographically secure random number generator with chaotic additional input. Nonlinear Dyn. 78, 2015–2020 (2014)

    Article  Google Scholar 

  28. Kim, M.Y., Sramek, C., Uchida, A., Roy, R.: Synchronization of unidirectionally coupled Mackey–Glass analog circuits with frequency bandwidth limitations. Phys. Rev. E 74, 016211 (2006)

    Article  Google Scholar 

  29. Sano, S., Uchida, A., Yoshimori, S., Roy, R.: Dual synchronization of chaos in Mackey–Glass electronic circuits with time-delayed feedback. Phys. Rev. E 75, 016207 (2007)

    Article  Google Scholar 

  30. Wan, A., Wei, J.: Bifurcation analysis of Mackey–Glass electronic circuits model with delayed feedback. Nonlinear Dyn. 57, 85–96 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Junges, L., Gallas, J.A.C.: Intricate routes to chaos in the Mackey–Glass delayed feedback system. Phys. Lett. A 376, 2109–2116 (2012)

    Article  MATH  Google Scholar 

  32. Amil, P., Cabeza, C., Marti, A.C.: Exact discrete-time implementation of the Mackey–Glass delayed model. IEEE Trans. Circuit. Syst II Express Briefs 62, 681–685 (2015)

    Article  Google Scholar 

  33. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  34. Wei, J.: Bifurcation analysis in a scalar delay differential equation. Nonlinearity 20, 2483–2498 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Farmer, J.D.: Chaotic attractor of an infinite dimensional dynamical system. Phys. D 4, 366393 (1982)

    MathSciNet  Google Scholar 

  36. Sedra, A.S., Smith, K.C.: Microelectronic Circuits. Oxford University Press, Oxford (2003)

    Google Scholar 

  37. labVIEW, National Instrument, http://www.ni.com/labview/ (2014)

  38. Banerjee, T., Biswas, D.: Synchronization in hyperchaotic time-delayed electronic oscillators coupled indirectly via a common environment. Nonlinear Dyn. 73, 2025–2048 (2013)

  39. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems: from hidden oscillations in Hilbert–Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

D.B. acknowledges the financial support provided by the CSIR, India. T.B. acknowledges the financial support from SERB (DST) [SB/FTP/PS-005/2013].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, D., Karmakar, B. & Banerjee, T. A hyperchaotic time-delayed system with single-humped nonlinearity: theory and experiment. Nonlinear Dyn 89, 1733–1743 (2017). https://doi.org/10.1007/s11071-017-3548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3548-4

Keywords

Navigation