Skip to main content
Log in

Solitary wave solutions of three special types of Boussinesq equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the \((G'/G)\)-expansion method is employed to construct more general solitary wave solutions of three special types of Boussinesq equation, namely Boussinesq equation, improved Boussinesq equation and variant Boussinesq equation, where the French scientist Joseph Valentin Boussinesq (1842–1929) described in the 1870s model equations for the propagation of long waves on the surface of water with a small amplitude. Our work is motivated by the fact that the \((G'/G)\)-expansion method provides not only more general forms of solutions but also periodic, solitary waves and rational solutions. The method appears to be easier and faster by means of a symbolic computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Russell, J.S.: Report on Waves. Report of the Fourteenth Meeting of the British Association for the Advancement of Science, Plates XLVII–LVII, pp. 311–390. John Murray, London (1844)

  2. Ablowtiz, M.J., Ladik, J.F.: On the solution of a class of nonlinear partial difference equations. Stud. Appl. Math. 57, 1–12 (1977)

    Article  MathSciNet  Google Scholar 

  3. Boussinesq, J.: Thorie de l’intumescence liquide, applele onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus de l’Acad. Sci. 72, 755–0759 (1871)

    MATH  Google Scholar 

  4. Boussinesq, J.: Thorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. Deux. Srie. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  5. Kaptsov, G.V.: Construction of exact solutions of the Boussinesq equation. J. Appl. Mech. Tech. Phys. 39, 389–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogolubsky, I.L.: Some examples of inelastic soliton interaction. Comput. Phys. Commun. 13, 149–155 (1977)

    Article  Google Scholar 

  7. Makhankov, V.G.: Dynamics of classical solitons (in nonintegrable systems). Phys. Rep. A 35(1), 1–128 (1978)

    Article  MathSciNet  Google Scholar 

  8. Bona, J., Sachs, R.: Global existence of smooth solution and stability waves for a generalized Boussinesq equation. Commun. Math. Phys. 118, 12–29 (1988)

    Article  MathSciNet  Google Scholar 

  9. Clarkson, P.: New exact solution of the Boussinesq equation. Eur. J. Appl. Math. 1, 279–300 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirota, R.: Solutions of the classical Boussinesq equation and the spherical Boussinesq equation: the Wronskian technique. J. Phys. Soc. Jpn. 55, 2137–2150 (1986)

    Article  Google Scholar 

  11. Liu, Y.: Instability and blow-up of solutions to a generalized Boussinesq equation. SIAM J. Math. Anal. 26, 1527–1546 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yazhima, N.: On a growing mode of the Boussinesq equation. Progr. Theor. Phys. 69, 678–680 (1983)

    Article  MathSciNet  Google Scholar 

  13. Wang, S.B., Chen, G.W.: Small amplitude solutions of the generalized IMBq equation. J. Math. Anal. Appl. 264, 846–866 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nakamura, A.: Exact solitary wave solution of the spherical Boussinesq equation. J. Phys. Soc. Jpn. 54, 4111–4114 (1985)

    Article  MathSciNet  Google Scholar 

  15. Sachs, R.L.: On the integrable variant of the Boussinesq system: Painlev property, rational solutions, a related many-body system, and equivalence with the AKNS hierarchy. Phys. D 30, 1–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yao, R., Li, Z.: New exact solutions for three nonlinear evolution equations. Phys. Lett. A. 297(3–4), 196–204 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fu, Z., Liu, S., Liu, S.: New transformations and new approach to find exact solutions to nonlinear equations. Phys. Lett. A 299, 507–512 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, J.F.: Multi-solitary wave solutions for variant Boussinesq equations and Kupershmidt equations. Appl. Math. Mech 21(2), 171–175 (2000)

    MathSciNet  Google Scholar 

  19. Singh, K., Gupta, R.K.: Exact solutions of a variant Boussinesq system. Int. J. Eng. Sci. 44, 1256–1268 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, X.-H.B., He, J.-H.: EXP-function method and its application to nonlinear equations. Chaos Solitons Fractals 38, 903–910 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, M., Li, X., Zhang, J.: The \((G^{\prime }/G)\)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  22. Talati, D., Wazwaz, A.-M.: Some new integrable systems of two-component fifth-order equations. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-3101-x

    Google Scholar 

  23. Khan, K., Akbar, M.A., Bekir, A.: Solitary wave solutions of the (2\(+\)1)-dimensional Zakharov-Kuznetsevmodified equal-width equation. J. Inf. Optim. Sci. 37(4), 569–589 (2016)

    MathSciNet  Google Scholar 

  24. Wang, D.-S., Li, H.: Single and multi-solitary wave solutions to a class of nonlinear evolution equations. J. Math. Anal. Appl. 343, 273–298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, G.W., Fakhar, K., Kara, A.H.: Soliton solutions and group analysis of a new coupled (2\(+\)1)-dimensional Burgers equations. Acta Phys. Polonica B 46(5), 923–930 (2015)

    Article  MathSciNet  Google Scholar 

  26. Abazari, R., Abazari, R.: Hyperbolic, trigonometric and rational function solutions of Hirota-Ramani equation via \((\frac{G^{\prime }}{G})\)-expansion method. Math. Prob. Eng. 2011, 11 (2011). doi:10.1155/2011/424801. [Article ID 424801]

    Article  MathSciNet  MATH  Google Scholar 

  27. Abazari, R.: Solitary wave solutions of Klein–Gordon equation with quintic nonlinearity. J. Appl. Mech. Tech. Phys 54(3), 397–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Abazari, R., Jamshidzadeh, S.: Exact solitary wave solutions of the complex Klein–Gordon equation. Optik Int. J. Light Electron Optik 126, 1970–1975 (2015)

  29. Kılıcman, A., Abazari, R.: Traveling wave solutions of the Schrodinger–Boussinesq system. Abstr. Appl. Anal. 2012, 11 (2012). doi:10.1155/2012/198398. [Article ID 198398]

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Abazari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidzadeh, S., Abazari, R. Solitary wave solutions of three special types of Boussinesq equations. Nonlinear Dyn 88, 2797–2805 (2017). https://doi.org/10.1007/s11071-017-3412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3412-6

Keywords

Navigation