Skip to main content
Log in

On a systematic approach for cracked rotating shaft study: breathing mechanism, dynamics and instability

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a systematic approach to deal with the modelling and analysis of the cracked rotating shafts behaviour. We begin by revisiting the problem of modelling the breathing mechanism of the crack. Here we consider an original approach based on the form we give to the energy of the system and then identify the mechanism parameters using 3D computations with unilateral contact conditions on the crack lips. A dimensionless flexibility is identified which makes the application of the approach to similar problems straightforward. The additional flexibility due to the crack is then introduced in a simple and comprehensive dynamical system (2 DOF) to characterize the crack effects on the dynamical response of a rotating shaft. Many results could help in early crack detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. AL-Shudeifat, M.A., Butcher, E.A., Stern, C.R.: General harmonic balance solution of a cracked rotor-bearing-disk system for harmonic and sub-harmonic analysis: Analytical and experimental approach. Int. J. Eng. Sci. 48(10):921–935 (2010). Structural Health Monitoring in the Light of Inverse Problems of Mechanics

  2. Andrieux, S., Varé, C.: A 3d cracked beam model with unilateral contact-application to rotors. Eur. J. Mech. A Solids 21, 793–810 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachschmid, N., Pennacchi, P., Tanz, E.: Rotating shafts affected by transverse cracks: experimental behaviour and modelling techniques. Int. J. Mater. Struct. Integr. 1(1–2–3), 71–116 (2007)

    Article  Google Scholar 

  4. Bachschmid, N., Pennacchi, P., Tanzi, E.: Some remarks on breathing mechanism, on non-linear effects and on slant and helicoidal cracks. Mech. Syst. Signal Process. 22(4), 879–904 (2008)

    Article  Google Scholar 

  5. Bachschmid, N., Tanzi, E., Pennacchi, P.: Cracked Rotors: A Survey on Static and Dynamic Behaviour Including Modelling and Diagnosis. Springer, Berlin (2010). doi:10.1007/978-3-642-01485-7

    Book  Google Scholar 

  6. Bachschmid, N., Pennacchi, P., Tanzi, E.: Cracked Rotating Shafts: Typical Behaviors, Modeling and Diagnosis. Springer, The Netherlands (2011)

    Google Scholar 

  7. Chen, C., Dai, L.: Bifurcation and chaotic response of a cracked rotor system with viscoelastic supports. Nonlinear Dyn. 50(3), 483–509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Darpe, A.K., Gupta, K., Chawla, A.: Coupled bending, longitudinal and torsional vibrations of a cracked rotor. J. Sound Vib. 269, 33–60 (2004)

    Article  Google Scholar 

  9. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55(5), 831–857 (1996)

    Article  Google Scholar 

  10. Dimarogonas, A.D., Papadopoulos, C.A.: Vibration of cracked shafts in bending. J. Sound Vib. 91(04), 1583–1593 (1983)

    Article  MATH  Google Scholar 

  11. El Arem, S.: Vibrations non-lineaires des structures fissurées: application aux rotors de turbines (in french). PhD thesis, Ecole Nationale des Ponts et Chaussées (2006)

  12. El Arem, S.: Shearing effects on the breathing mechanism of a cracked beam section in bi-axial flexure. Eur. J. Mech. A Solids 28, 1079–1087 (2009)

    Article  MATH  Google Scholar 

  13. El Arem, S., Maitournam, H.: Un élément fini de poutre fissurée: application à la dynamique des arbres tournants (in french). Eur. J. Comput. Mech. 16(5), 643–663 (2007)

    MATH  Google Scholar 

  14. El Arem, S., Maitournam, H.: A cracked beam finite element for rotating shaft dynamics and stability analysis. J. Mech. Mater. Struct. 3(5), 893–910 (2008)

    Article  Google Scholar 

  15. El Arem, S., Nguyen, Q.S.: Nonlinear dynamics of a rotating shaft with a breathing crack. Ann. Solid Struct. Mech. 3(1), 1–14 (2012)

    Article  Google Scholar 

  16. El Arem, S., Andrieux, S., Varé, C., Verrier, P.: Loi de comportement en flexion d’une section de poutre fissurée avec prise en compte des effets de cisaillement (in french). In: 6ème Colloque Nationale en Calcul des Structures, Giens, vol. II, pp. 223–230 (2003)

  17. Floquet, G.: Sur les équations différentielles linéaires coefficients périodiques. Ann Scien Ecole Nor Sup 2me série:3–132 (1879)

  18. Gasch, R: Dynamical behavior of a simple rotor with a cross-sectional crack. In: Vibrations in Rotating Machinery, I. Mech. E. Conference, London, pp. 123–128 (1976)

  19. Gasch, R.: A survey of the dynamic behavior of a simple rotating shaft with a transverse crack. J. Sound Vib. 160, 313–332 (1993)

    Article  MATH  Google Scholar 

  20. Grabowski, B.: The vibrational behavior of a turbine rotor containing a transverse crack. J. Mech. Des. 102(1), 140–146 (1980)

    Article  Google Scholar 

  21. Han, Q., Chu, F.: Parametric instability of a jeffcott rotor with rotationally asymmetric inertia and transverse crack. Nonlinear Dyn. 73(1), 827–842 (2013)

    Article  Google Scholar 

  22. Mayes, I., Davies, W.: The vibrational behaviour of a rotating shaft system containing a transverse crack. In: Vibrations in rotating machinery, Inst. Mech. E. Conference, London, pp 53–65 (1976)

  23. Meng, G., Gasch, R.: Stability ans stability degree of a cracked flexible rotor supported on journal bearings. J. Vib. Acoust. Trans. ASME 122, 116–125 (2000)

    Article  Google Scholar 

  24. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley, New York (1994)

    MATH  Google Scholar 

  25. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  26. Papadopoulos, C.: Some comments on the calculation of the local flexibility of cracked shafts. J. Sound Vib. 278, 1205–1211 (2004)

    Article  Google Scholar 

  27. Papadopoulos, C.A.: The strain energy release approach for modeling cracks in rotors: a state of the art review. Mech. Syst. Signal Process. 22(4), 763–789 (2008)

    Article  Google Scholar 

  28. Patel, T.H., Darpe, A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J. Sound Vib. 311, 953–972 (2008)

    Article  Google Scholar 

  29. Stoisser, C., Audebert, S.: A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery. Mech. Syst. Signal Process. 22(4), 818–844 (2008)

    Article  Google Scholar 

  30. Wauer, J.: On the dynamics of cracked rotors: a literature survey. Appl. Mech. Rev. 43(1), 13–17 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber El Arem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Arem, S., Ben Zid, M. On a systematic approach for cracked rotating shaft study: breathing mechanism, dynamics and instability. Nonlinear Dyn 88, 2123–2138 (2017). https://doi.org/10.1007/s11071-017-3367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3367-7

Keywords

Navigation