Skip to main content
Log in

Localized discrete breather modes in neuronal microtubules

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We made an attempt to provide a realistic picture of the localization of energy in microtubules (MTs), and we intend to model the nonlinear dynamics of MTs using the “double-well” \(\phi ^4\) form of the potential describing the dipole–dipole interactions. We investigate the modulational instability (MI) of the nonlinear plane wave solutions by considering both the wave vector (q) of the basic states and the wave vector (Q) of the perturbations as free parameters. A set of explicit criteria of MI is derived, and under the plane-wave perturbation, the constant amplitude solution becomes unstable and localized discrete breathers (DBs) solutions appear. We show numerically that MI is also an indicator of the presence of discrete breathers. We suggest that an electric field favourably leads the DB excitations towards the properly aligned end triggering a dissembly of the protofilament due to the energy release. These DBs could catalyse MT-associated proteins attachment/detachment and promote or inhibit the kinesin walk. We establish that the electromechanical vibrations in MTs can generate an electromagnetic field in the form of an electric pulse (breathers) which propagates along MT serving as signalling pathway in neuronal cells. The DBs in MT can be viewed as a bit of information whose propagation can be controlled by an electric filed. They might perform the role of elementary logic gates, thus implementing a subneuronal mode of computation. The generated DBs present us with novel possibilities for the direct interaction between the local electromagnetic field and the cytoskeletal structures in neurons. Thus, we emphasize that the effect of discreteness and electric field plays a significant role in MTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hyams, J.S., Lloyd, C.W.: Microtubules. Wiley, New York (1994)

    Google Scholar 

  2. Kirschner, M., Mitchison, T.: Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986)

    Article  Google Scholar 

  3. Mitchison, T., Kirschner, M.: Dynamic instability of microtubule growth. Nature 312, 237–242 (1984)

    Article  Google Scholar 

  4. Lodish, H., Berk, A., Zipuski, S.L., Matsudaira, P., Baltimore, D., Darnell, J.: Molecular Cell Biology, 4th edn. Freeman, San Fransisco (2000)

    Google Scholar 

  5. Ouakad, H.M., Younis, M.I.: Dynamic response of slacked single-walled carbon nanotube resonators. Nonlinear Dyn. 67, 1419–1436 (2012)

    Article  MathSciNet  Google Scholar 

  6. Oosawa, F., Asakura, S.: Thermodynamic of the Polymerization of Protein. Academic Press, London (1975)

    Google Scholar 

  7. Johnson, K.A., Borisy, G.G.: Thermodynamic analysis of microtubule self-assembly in vitro. Mol. Biol. 133, 199–216 (1979)

    Article  Google Scholar 

  8. Desai, A., Mitchison, T.J.: Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997)

    Article  Google Scholar 

  9. Haghshenas-Jaryani, M., Black, B., Ghaffari, S., Drake, J., Bowling, A., Mohanty, S.: Dynamics of microscopic objects in optical tweezers: experimental determination of underdamped regime and numerical simulation using multiscale analysis. Nonlinear Dyn. 76, 1013–1030 (2014)

    Article  MathSciNet  Google Scholar 

  10. Holy, T.E., Leibler, S.: Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl. Acad. Sci. USA 91, 5682–5685 (1994)

    Article  Google Scholar 

  11. Wittmann, T., Waterman-Storer, C.M.: Cell motility: can Rho GTPases and microtubules point the way? J. Cell Sci. 114, 3795–3803 (2001)

    Google Scholar 

  12. Horio, T., Hotani, H.: Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321, 605–607 (1986)

    Article  Google Scholar 

  13. Komarova, Y.A., Vorobjev, I.A., Borisy, G.G.: Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J. Cell Sci. 115, 3527–3539 (2002)

    Google Scholar 

  14. Drummond, D.R., Cross, R.A.: Dynamics of interphase microtubules in \(<\) i \(>\) Schizosaccharomyces pombe \(<\) /i \(>\). Curr. Biol. 10, 766–775 (2000)

    Article  Google Scholar 

  15. Straube, A.: How to measure microtubule dynamics? Mol. Biol. 777, 1–14 (2011)

    Google Scholar 

  16. van der Vaart, B., Akhmanova, A., Straube, A.: Regulation of microtubule dynamic instability. Biochem. Soc. Trans. 37, 1007–1013 (2009)

    Article  Google Scholar 

  17. Pokorneý, J.: Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 63, 321–326 (2004)

    Article  Google Scholar 

  18. Pokorný, J.: Conditions for coherent vibrations in the cytoskeleton. Bioelectrochem. Bioenerg. 48, 267–271 (1999)

    Article  Google Scholar 

  19. Whitham, G.B.: Non-linear dispersive waves. Proc. R. Soc. Lond. A 283, 238–261 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, San Diego (1989)

    MATH  Google Scholar 

  21. Battelli, F., Diblík, J., Fe\(\breve{{\rm c}}\)kan, M., Pickton, J., Pospí\(\breve{{\rm s}}\)il, M., Susanto, H.: Dynamics of generalized PT-symmetric dimers with time-periodic gain–loss. Nonlinear Dyn. 81, 353–371 (2015)

  22. Hendricks, A.G., Epureanu, B.I., Meyhfer, E.: Mechanistic mathematical model of kinesin under time and space fluctuating loads. Nonlinear Dyn. 53, 303–320 (2008)

    Article  MATH  Google Scholar 

  23. Ansari, R., Ramezannezhad, H., Gholami, R.: Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment. Nonlinear Dyn. 67, 2241–2254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chretien, D., Fuller, S.D., Karsenti, E.: Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell. Biol. 129, 1311–1328 (1995)

    Article  Google Scholar 

  25. Glauber, R.: Coherent and incoherent states of the radiation field. J Phys. Rev. 131, 2766 (1963)

    Article  MathSciNet  Google Scholar 

  26. Daniel, M., Kavitha, L., Amuda, R.: Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole–dipole interaction. Phys. Rev. B 59, 13774 (1999)

    Article  Google Scholar 

  27. Cuevas, J., Archilla, J.F.R., Romero, F.R.: Stability of non-time-reversible phonobreathers. J. Phys. A Math. Theor. 44, 035102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Campbell, D.K., Flach, S., Kivshar, Y.S.: Localizing energy through nonlinearity and discreteness. Phys. Today 57, 43 (2004)

    Article  Google Scholar 

  29. Yi, X., Wattis, J.A.D., Susanto, H., Cummings, L.J.: Discrete breathers in a two-dimensional spring-mass lattice. J. Phys. A Math. Theor. 42, 355207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kosevich, A.M., Kovalev, A.S.: Self-localization of vibrations in a one-dimensional anharmonic chain. Zh. Eksp. Teor. Fiz. 67, 1793–1804 (1974)

    Google Scholar 

  31. Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970 (1988)

    Article  Google Scholar 

  32. MacKay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 1623 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Daumont, I., Dauxois, T., Peyrard, M.: Modulational instability: first step towards energy localization in nonlinear lattices. Nonlinearity 10, 617–630 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dauxois, T., Peyrard, M.: Energy localization in nonlinear lattices. Phys. Rev. Lett. 70, 3935 (1993)

    Article  Google Scholar 

  35. Kavitha, L., Muniyappan, A., Prabhu, A., Zdravković, S., Jayanthi, S., Gopi, D.: Nano breathers and molecular dynamics simulations in hydrogen-bonded chains. J. Biol. Phys. 39, 15–35 (2013)

    Article  Google Scholar 

  36. Kivshar, Y.S., Peyrard, M.: Modulational instabilities in discrete lattices. Phys. Rev. A 46, 3198 (1992)

    Article  Google Scholar 

  37. Ablowitz, M.J., Clarkson, P.A.: Solitons: nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  38. Miura, M.R.: B\({\ddot{{\rm a}}}\)cklund Transformation. Springer, Berlin (1978)

    Google Scholar 

  39. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Scientific and Technical Publishers, Shanghai (1999)

    Google Scholar 

  40. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095 (1967)

    Article  MATH  Google Scholar 

  41. Kavitha, L., Saravanan, M., Akila, N., Bhuvaneswari, S., Gopi, D.: Solitonic transport of energy–momentum in a deformed magnetic medium. Phys. Scr. 85, 035007 (2012)

    Article  MATH  Google Scholar 

  42. Kavitha, L., Sathishkumar, P., Gopi, D.: Soliton-based logic gates using spin ladder. Commun. Nonlinear Sci. Numer. Simul. 15, 3900–3912 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    Article  MATH  Google Scholar 

  44. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650–654 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Inc, M., Fan, E.G.: Extended tanh-function method for finding travelling wave solutions of some nonlinear partial differential equations. Z. Naturforsch. 60, 7 (2005)

    Google Scholar 

  46. Kavitha, L., Akila, N., Prabhu, A., Kuzmanovska-Barandovska, O., Gopi, D.: Exact solitary solutions of an inhomogeneous modified nonlinear Schr\({\ddot{o}}\)dingerequation with competing nonlinearities. Math. Comput. Model 53, 1095–1110 (2011)

    Article  MATH  Google Scholar 

  47. Kavitha, L., Srividya, B., Gopi, D.: Effect of nonlinear inhomogeneity on the creation and annihilation of magnetic soliton. J. Magn. Magn. Mater 322, 1793–1810 (2010)

    Article  Google Scholar 

  48. Kavitha, L., Srividya, B., Akila, N., Gopi, D.: Shape changing solitary solutions of a nonlocally damped nonlinear Schr\({\ddot{o}}\)dinger equation using symbolic computation. Nonlinear Sci. Lett. A 1, 95–107 (2010)

    Google Scholar 

  49. Kavitha, L., Sathishkumar, P., Gopi, D.: Energy-momentum transport through soliton in a site-dependent ferromagnet. Commun. Nonlinear Sci. Numer. Simul. 16, 1787–1803 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kavitha, L., Venkatesh, M., Jayanthi, S., Gopi, D.: Propagation of proton solitons in hydrogen-bonded chains with an asymmetric double-well potential. Phys. Scr. 86, 025403 (2012)

    Article  Google Scholar 

  51. Zdravković, S., Kavitha, L., Satarić, M.V., Zeković, S., Petrović, J.: Modified extended tanh-function method and nonlinear dynamics of microtubules. Chaos Solitons Fractals 45, 1378–1386 (2012)

    Article  MATH  Google Scholar 

  52. Kavitha, L., Prabhu, A., Gopi, D.: New exact shape changing solitary solutions of a generalized Hirota equation with nonlinear inhomogeneities. Chaos Solitons Fractals 42, 2322 (2009)

    Article  MATH  Google Scholar 

  53. Kavitha, L., Sathishkumar, P., Gopi, D.: Shape changing soliton in a site-dependent ferromagnet using tanh-function method. Phys. Scr. 79, 015402 (2009)

    Article  MATH  Google Scholar 

  54. Dai, C., Ni, Y.: The application of extended tanh-function approach in Toda lattice equations. Int. J. Theor. Phys. 46, 1455–1465 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yan, Z.Y.: Abundant families of Jacobi elliptic function solutions of the (2 + 1)-dimensional integrable Davey–Stewartson-type equation via a new method. Chaos Solitons Fractals 18, 299–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. Kavitha, L., Saravanan, M., Srividya, B., Gopi, D.: Breatherlike electromagnetic wave propagation in an antiferromagnetic medium with Dzyaloshinsky–Moriya interaction. Phys. Rev. E 84, 066608 (2011)

    Article  Google Scholar 

  57. Kavitha, L., Parasuraman, E., Venkatesh, M., Mohamadou, A., Gopi, D.: Breather-like protonic tunneling in a discrete hydrogen bonded chain with heavy-ionic interactions. Phys. Scr. 87, 035007 (2013)

    Article  MATH  Google Scholar 

  58. Zeković, S., Muniyappan, A., Zdravković, S., Kavitha, L.: Employment of Jacobian elliptic functions for solving problems in nonlinear dynamics of microtubules. Chin. Phys. B 23, 020504 (2014)

    Article  Google Scholar 

  59. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. He, J.H., Abdou, M.A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals 34, 1421–1429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wu, X.H., He, J.H.: Solitary solutions, periodic solutions and compacton-like solutions using the Exp-function method. Comput. Math. Appl. 54, 966–986 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Bekir, A., Boz, A.: Exact solutions for a class of nonlinear partial differential equations using Exp-function method. Int. J. Nonlinear Sci. Numer. Simul. 8, 505 (2007)

    Article  Google Scholar 

  63. Kavitha, L., Srividya, B., Gopi, D.: Exact propagating dromion-like localized wave solutions of generalized (2 + 1)-dimensional Davey–Stewartson equations. Comput. Math. Appl. 62, 4691 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Nonlinear Mech. 31, 329–338 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  65. Gao, Y.T., Tian, B.: Generalized tanh method with symbolic computation and generalized shallow water wave equation. Comput. Math. Appl. 33, 115–118 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  66. Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. Kuang, J.L., Leung, A.Y.T.: Chaotic flexural oscillations of a spinning nanoresonator. Nonlinear Dyn. 51, 9–29 (2008)

    Article  MATH  Google Scholar 

  68. Elwakil, S.A., El-labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A 299, 179–188 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  69. L\({\ddot{u}}\), Z.S., Zhang, H.Q, : On a new modified extended tan\(h\)-function method. Commun. Theor. Phys. 39, 405–408 (2003)

  70. Dai, C.Q., Zhang, J.F.: Exact solutions of discrete complex cubicquintic Ginzburg–Landau equation with non-local quintic term. Commun. Theor. Phys. 46, 23 (2006)

    Article  Google Scholar 

  71. Wang, Z., Zhang, H.Q.: Soliton-like and periodic form solutions to (2 + 1)-dimensional Toda equation. Chaos Solitons Fractals 31, 197–204 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wang, Z.: Discrete tanh method for nonlinear difference-differential equations. Comput. Phys. Commun. 180, 1104–1108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  73. Dai, Z., Liu, J., Liu, Z.: Exact periodic kink-wave and degenerative soliton solutions for potential Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 15, 2331–2336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. Khawaja, U.Al, Bahlouli, H., Asad-uz-zaman, M., Al-Marzoug, S.M.: Modulational instability analysis of the Peregrine soliton. Commun. Nonlinear Sci. Numer. Simul. 19, 2706–2714 (2014)

    Article  MathSciNet  Google Scholar 

  75. Biswas, A., Milovic, D.: Bright and dark solitons of the generalized nonlinear Schr\({\ddot{o}}\)dinger equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1473–1484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  76. Purich, D.L.: Enzyme catalysis: a new definition accounting for noncovalent substrate and product-like states. Trends Biochem. Sci. 26, 417–421 (2001)

    Article  Google Scholar 

  77. Witte, H., Neukirchen, D., Bradke, F.: Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619–632 (2008)

    Article  Google Scholar 

  78. Wang, P., Zhang, Y., Lü, J., Yu, X.: Functional characteristics of additional positive feedback in genetic circuits. Nonlinear Dyn. 79, 397–408 (2015)

    Article  Google Scholar 

  79. Hirokawa, N., Takemura, R.: Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201–214 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

L.K gratefully acknowledges the financial support by NBHM (2/48(9)/2011/-R and DII/1223), India, in the form of a major research project; DAE-BRNS (2009/20/37/7/BRNS/1819), India, in the form of Young Scientist Research Award, and ICTP, Italy, in the form of Regular Associateship. E.P. gratefully acknowledges Periyar University for providing the University Research Fellowship. A. M. gratefully acknowledges UGC for the Rajiv Gandhi National Fellowship. This research work was partially supported by Serbian Ministry of Education and Sciences (Grant III45010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kavitha.

Appendices

Appendix 1

$$\begin{aligned} Im(\varOmega )= & {} \pm \Bigg [-768X_1X_2u_0^2\cos (q+Q)\\&-\,768X_1X_2u_0^2 \cos (q-Q)+27648X_2^2u_0^4\\&+\,8X_1^2\cos (q+Q)\omega \cos (q-Q)\\&-\,384\omega _0X_2u_0^2+768X_0X_2u_0^2\\&+\,384 X_2 u_0^2 +4X_1\omega _0\cos (q+Q)\\&+\,4X_1\omega _0\cos (q-Q)-8X_1 X_0\cos (q+Q)\\&-\,8X_1X_0\cos (q-Q) -4X_1 \omega \cos (q+Q)\\&-\,4X_1\omega \cos (q-Q)+\omega _0^2 -2\omega _0\omega \\&+\,4X_0^2 +4X_0\omega +\omega ^2\\&+\,4X_1^2\cos (q+Q)^2 +4X_1^2\cos (q-Q)^2\\&-\,\Big [\frac{192X_1X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\Big ]\cos (q+Q)\\&-\,\Big [\frac{192X_1X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\Big ]\cos (q-Q)\\&-\,\frac{96\omega _0X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\\&+\,\frac{96(\varepsilon +\frac{24X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2})X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\\&+\,\frac{192X_0X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\\&+\,\frac{96X_2X_3^2\omega }{(4X_1-\varepsilon -2X_0)^2} +\frac{18{,}432X_2^2X_3^2u_0^2}{(4X_1-\varepsilon -2X_0)^2}\\&+\,384\Big [\varepsilon +\frac{24X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\Big ]X_2u_0^2\\&-\,4X_1\Big [\varepsilon +\frac{24X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\Big ]\cos (q-Q)\\&-\,4X_1\Big [\varepsilon +\frac{24X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\Big ] \cos (q+Q)\\&+\,\frac{2304X_2^2X_3^4}{(4X_1-\varepsilon -2X_0)^4}\\&+\,\Big [\varepsilon +\frac{24X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\Big ]^2\\&-\,2\omega _0 \Big [\varepsilon +\frac{24X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\Big ] \\&+\,4X_0\Big [\varepsilon +\frac{24X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\Big ]\\&+\,2\omega \Big [\varepsilon +\frac{24X_2X_3^2}{(4X_1-\varepsilon -2X_0)^2}\Big ]\Bigg ]^{\frac{1}{2}}. \end{aligned}$$

Appendix 2

Consider a system of M polynomial NDDEs

$$\begin{aligned}&\Delta \mathbf {(u_{n+p1}(X),\ldots ,u_{n+pk}(X),\ldots ,u_{n+p1}^{'}(X),\ldots ,}\nonumber \\&\mathbf {u_{n+pk}^{'}(X),\ldots ,u_{n+p1}^{(r)}(X),\ldots ,u_{n+pk}^{(r)}(X)=0,} \end{aligned}$$
(37)

where the dependent variable \(\mathbf {u_n}\) has M components \(u_{i,n}\), the continuous variable \(\mathbf {x}\) has N components \(x_{i}\), the discrete variable \(\mathbf {n}\) has Q components \(n_j\), the k shift vectors \(\mathbf {p_i} \in Z^{Q}\) and \(\mathbf {u}^{(r)}\mathbf {(X)}\) denotes the collection of mixed derivative terms of order r.

According to the tanh-function method, the main steps of the extended tanh-function method for NDDEs are outlined as follows.

Step 1 When we seek the travelling wave solutions of Eq. (37), the first step is to introduce the wave transformation \(\mathbf {u_{n+ps}(X)~=~U_{n+ps}}(\xi _n)\), \(\xi _n~=~\sum _{i=1}^{Q}d_i n_i+\sum _{j=1}^{N}c_j x_j+\chi \) for any \(s(s~=~1,\ldots ,k)\), where the coefficients \(c_{1},c_{2},\ldots , c_{N},d_{1},d_{2},\ldots ,d_{Q}\) and the phase \(\chi \) are all constants. In this way, Eq. (37) becomes

$$\begin{aligned}&\Delta \mathbf {(U_{n+p1}(\xi _n),\ldots ,U_{n+pk}(\xi _n),\ldots ,U_{n+p1}^{'}(\xi _n),\ldots ,}\nonumber \\&\mathbf {U_{n+pk}^{'}(\xi _n),\ldots ,U_{n+p1}^{(r)}(\xi _n),\ldots ,U_{n+pk}^{(r)}(\xi _n)=0,} \end{aligned}$$
(38)

Step 2 We propose the following series expansion as a solution of Eq. (38):

$$\begin{aligned} U_{n}(\xi _{n})=\sum _{j=-l}^{l}a_{j}\phi ^{j}(\xi _{n}), \end{aligned}$$
(39)

where \(\phi (\xi _{n})\) satisfies the following Ricatti equation:

$$\begin{aligned} \frac{d\phi (\xi _{n})}{d\xi _{n}}=\delta +\phi ^{2}(\xi _{n}), \end{aligned}$$
(40)

where \(\delta \) is an arbitrary constant. It is known that Eq. (40) possesses the solutions,

$$\begin{aligned}&\phi (\xi _{n})= \nonumber \\&\Bigg \{-\sqrt{-\delta }\tanh (\sqrt{-\delta }\xi _{n}), {-}\sqrt{-\delta }\coth (\sqrt{-\delta }\xi _{n}),\delta <0,\nonumber \\&\sqrt{\delta }\tan (\sqrt{\delta }\xi _{n}),{-}\sqrt{\delta }\cot (\sqrt{\delta }\xi _{n}),\delta > 0.\Bigg \}. \end{aligned}$$
(41)

At present, one should note the identities

$$\begin{aligned}&\tanh (x+y)=\frac{\tanh (x)+\tanh (y)}{1+\tanh (x)\tanh (y)}, \nonumber \\&\coth (x+y)= \frac{\coth (x)+\tanh (y)}{1+\coth (x)\tanh (y)}, \end{aligned}$$
(42)

and

$$\begin{aligned}&\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x)\tan (y)},\nonumber \\&\cot (x+y)= \frac{\cot (x)-\tan (y)}{1+\cot (x)\tan (y)}. \end{aligned}$$
(43)

One can obviously rewrite the expressions Eq. (42) and Eq. (43) in an uniform formula by using the expression Eq. (41)

$$\begin{aligned} \phi (\xi _{n}+y)=\frac{\phi (\xi _{n})+\mu \sqrt{\mu \delta }f(\sqrt{\mu \delta }y)}{1-\frac{1}{\sqrt{\mu \delta }}\phi (\xi _{n})f(\sqrt{\mu \delta }y)}, \end{aligned}$$
(44)

where \(\mu =\pm {1}\) and

$$\begin{aligned} f(\sqrt{\mu \delta }y)= \left\{ \begin{array}{lll} &{}\tanh (\sqrt{-\delta }y), &{}\quad \mu = -1,\\ &{}\tan (\sqrt{\delta }y), &{}\quad \mu = 1. \end{array} \right. \end{aligned}$$
(45)

Thus

$$\begin{aligned}&u_{n}(\xi _{n+p_{s}})\nonumber \\&\quad = a_{0} + \sum _{j=-l}^{l} a_{j}\Bigg [\frac{\phi (\xi _{n})+\mu \sqrt{\mu \delta }f(\sqrt{\mu \delta }\varphi _{s})}{1-\frac{1}{\sqrt{\mu \delta }}\phi (\xi _{n})f(\sqrt{\mu \delta }\varphi _{s})}\Bigg ]^j,\nonumber \\ \end{aligned}$$
(46)

where

$$\begin{aligned} \varphi _{s}=p_{s1}d_{1}+p_{s2}d_{2}+\ldots +p_{sQ}d_{Q}, \end{aligned}$$
(47)

and \(p_{sj}\) is the jth component of shift vector \(p_{s}\).

Step 3 Determine the degree l of the polynomial solutions Eqs. (39) and (46). We are interested in balancing the term \(\phi (\xi _{n})\), with the leading terms of \(\mathbf {U_{n}(\xi _{n+p_{s}})}\), \((\mathbf {p_{s}\ne 0})\) will not affect the balance since \(U_{n}(\xi _{n+p_{s}})\) can be interpreted as being of degree zero in \(\phi (\xi _{n})\). So we can easily get the degree l in the ansatz Eqs. (39) and (46) by balancing the highest nonlinear terms and the highest-order derivative term in \(\mathbf {U_{n}(\xi _n)}\) as in the continuous case.

Step 4  Substituting the ansatzs Eqs. (39) and (46) into (38), then setting the coefficients of all independent terms in \(\phi (\xi _{n})\) to zero, we will get a series of algebraic equations, from which the constants \(a_0, a_j(j=1,2\ldots ,l)\) are explicitly determined by the help of Maple.

Step 5 Substitute the values solved in Step 4 with Eq. (41) into expression Eq. (39), and one can find the solutions of Eq. (37).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, L., Parasuraman, E., Muniyappan, A. et al. Localized discrete breather modes in neuronal microtubules. Nonlinear Dyn 88, 2013–2033 (2017). https://doi.org/10.1007/s11071-017-3359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3359-7

Keywords

Navigation