Skip to main content
Log in

Piecewise linear differential systems without equilibria produce limit cycles?

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, we study the planar piecewise differential systems formed by two linear differential systems separated by a straight line, such that both linear differential have no equilibria, neither real nor virtual. When the piecewise differential system is continuous, we show that the system has no limit cycles. But when the piecewise differential system is discontinuous, we show that it can have at most one limit cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andronov, A., Vitt, A., Khaikin, S.: Theory of Oscillations. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  2. Artés, J.C., Llibre, J., Medrado, J.C., Teixeira, M.A.: Piecewise linear differential systems with two real saddles. Math. Comput. Simul. 95, 13–22 (2013)

    Article  MathSciNet  Google Scholar 

  3. Braga, D.C., Mello, L.F.: Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane. Nonlinear Dyn. 73, 1283–1288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buzzi, C., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Continuous Dyn. Syst. 33, 3915–3936 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Appl. Math. Sci. Series 163. Springer-Verlag, London (2008)

    MATH  Google Scholar 

  6. Euzébio, R.D., Llibre, J.: On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line. J. Math. Anal. Appl. 424, 475–486 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Freire, E., Ponce, E., Rodrigo, F., Torres, F.: Bifurcation sets of continuous piecewise linear systems with two zones. Int. J. Bifurc. Chaos 8, 2073–2097 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11, 181–211 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Freire, E., Ponce, E., Torres, F.: The discontinuous matching of two planar linear foci can have three nested crossing limit cycles. Publ. Mat. 58, 221–253 (2014)

  10. Freire, E., Ponce, E., Torres, F.: A general mechanism to generate three limit cycles in planar Filippov systems with two zones. Nonlinear Dyn. 78, 251–263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giannakopoulos, F., Pliete, K.: Planar systems of piecewise linear differential equations with a line of discontinuity. Nonlinearity 14, 1611–1632 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, M., Zhang, W.: On Hopf bifurcation in non-smooth planar systems. J. Differ. Equ. 248, 2399–2416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huan, S.M., Yang, X.S.: On the number of limit cycles in general planar piecewise linear systems. Discrete Continuous Dyn Syst A 32, 2147–2164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huan, S.M., Yang, X.S.: Existence of limit cycles in general planar piecewise linear systems of saddle–saddle dynamics. Nonlinear Anal. 92, 82–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huan, S.M., Yang, X.S.: On the number of limit cycles in general planar piecewise linear systems of node–node types. J. Math. Anal. Appl. 411, 340–353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karlin, S.J., Studden, W.J.: T-Systems: With Applications in Analysis and Statistics. Pure Appl. Math. Interscience Publishers, New York, London, Sidney (1966)

    MATH  Google Scholar 

  17. Leine, R.E., van Campen, D.H.: Discontinuous bifurcations of periodic solutions. Math. Comput. Model. 36, 259–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the birth of limit cycles for non-smooth dynamical systems. Bull. Sci. Math. 139, 229–244 (2015)

    Article  MathSciNet  Google Scholar 

  19. Llibre, J., Novaes, D.D., Teixeira, M.A.: Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differential center with two zones. Int. J. Bifurc. Chaos 25(1550144), 11 (2015)

    MATH  Google Scholar 

  20. Llibre, J., Novaes, D.D., Teixeira, M.A.: Maximum number of limit cycles for certain piecewise linear dynamical systems. Nonlinear Dyn. 82, 1159–1175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Llibre, J., Ordóñez, M., Ponce, E.: On the existence and uniqueness of limit cycles in planar continuous piecewise linear systems without symmetry. Nonlinear Anal. Real World Appl. 19, 325–335 (2012)

    MATH  Google Scholar 

  22. Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones. Dyn. Continuous Discrete Impuls. Syst Series B 19, 325–335 (2012)

  23. Llibre, J., Sotomayor, J.: Phase portraits of planar control systems. Nonlinear Anal. Theory Methods Appl. 27, 1177–1197 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Llibre, J., Teixeira, M.A., Torregrosa, J.: Lower bounds for the maximum number of limit cycles of discontinuous piecewise linear differential systems with a straight line of separation. Int. J. Bifurc. Chaos 23, 1350066–10 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Lum, R., Chua, L.O.: Global Properties of Continuous Piecewise-Linear Vector Fields. Part I: Simplest Case in \(R^2\), Memorandum UCB/ERL M90/22. University of California, Berkeley (1990)

    Google Scholar 

  26. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D 241, 1826–1844 (2012)

    Article  MathSciNet  Google Scholar 

  27. Marsden, J.E., Tromba, A.: Vector Calculus, 5th edn. W. H. Freeman, New York (2003)

    MATH  Google Scholar 

  28. Simpson, D.J.W.: Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science A, vol. 69. World Scientific, Singapore (2010)

    Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their good comments which help us to improve the presentation of this paper. The first author was partially supported by a MINECO/FEDER Grant MTM2013-40998-P, an AGAUR Grant No. 2014SGR568, the Grants FP7-PEOPLE-2012-IRSES 318999 and 316338, and a CAPES Grant 88881. 030454/ 2013-01 do Programa CSF-PVE. The second author was partially supported by FAPESP under Grant No. 2012/18780-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonio Teixeira.

Appendix extended complete Chebyshev system

Appendix extended complete Chebyshev system

The functions \((f_0, \ldots , f_n)\) defined on an interval I form an extended Chebyshev system if and only if any nonzero linear combination of these functions has at most n zeros in I taking into account their multiplicities and this number is reached.

The functions \((f_0, \ldots , f_n)\) form an extended complete Chebyshev system if and only if for any \(k\in \{0, 1, \ldots , n\}\), \((f_0, \ldots , f_k)\) form an extended Chebyshev system.

Theorem 5

Let \(f_0, \ldots , f_n\) be analytic functions defined on an open interval \(I\subset {\mathbb {R}}\). Then \((f_0, \ldots , f_n)\) is an extended complete Chebyshev system on I if and only if for each \(k\in \{0, 1, \ldots , n\}\) and all \(y\in I\) the Wronskian

$$\begin{aligned} W(f_0, \ldots , f_k)(y)= \left| \begin{array}{cccc} f_0(y) &{} f_1(y) &{} \cdots &{} f_k(y)\\ f_0'(y) &{} f_1'(y) &{} \cdots &{} f_k'(y)\\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ f_0^{(k)}(y) &{} f_1^{(k)}(y) &{} \cdots &{} f_k^{(k)}(y) \end{array} \right| \end{aligned}$$

is different from zero.

For a proof of Theorem 5, see [16].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llibre, J., Teixeira, M.A. Piecewise linear differential systems without equilibria produce limit cycles?. Nonlinear Dyn 88, 157–164 (2017). https://doi.org/10.1007/s11071-016-3236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3236-9

Keywords

Mathematics Subject Classification

Navigation