Skip to main content
Log in

Soliton and rogue-wave solutions for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the soliton and rogue-wave solutions for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation, which describes the spin dynamics of a Heisenberg ferromagnetic spin chain with the bilinear and biquadratic interactions. For such an equation, there exists a gauge transformation which converts the nonzero potential Lax pair into some constant-coefficient differential equations. Solving those equations, vector solutions for the nonzero potential Lax pair are obtained. The condition for the modulation instability of the plane-wave solution is also given through the linear stability analysis. Then, we present the determinant representations for the N-soliton solutions via the Darboux transformation (DT) and Nth-order rogue-wave solutions via the generalized DT. Profiles for the solitons and rogue waves are analyzed with respect to the lattice parameter \(\sigma \), respectively. When \(\sigma \) is greater than a certain value marked as \(\sigma _{0}\), one-soliton velocities increase with the increase of \(\sigma \). When \(\sigma <\sigma _{0}\), one-soliton velocities decrease with the increase of \(\sigma \). When the time t is equal to zero, \(\sigma \) has no effect on the interactions between the two solitons. When \(t\ne 0\), different choices of \(\sigma \) lead to the different two-soliton velocities, giving rise to the different interaction regions. Widths of the first-order rogue waves become bigger with the decrease of \(\sigma \), while the amplitudes do not depend on \(\sigma \). The second-order rogue waves are composed by three first-order rogue waves whose widths all get wider with the decrease of \(\sigma \), while the amplitudes do not depend on \(\sigma \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, D.S., Zhang, D.J., Yang, J.K.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbasbandy, S., Zakaria, F.S.: Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn. 51, 83–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liang, J.W., Xu, T., Tang, M.Y., Liu, X.D.: Integrable conditions and inhomogeneous soliton solutions of a coupled nonlinear Schrödinger system with distributed coefficients. Nonlinear Anal.-Real 14, 329–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lü, X., Ma, W.X., Zhou, Y., Khalique, C.M.: Rational solutions to an extended Kadomtsev–Petviashvili-like equation with symbolic computation. Comput. Math. appl. 71, 1560–1567 (2016)

    Article  MathSciNet  Google Scholar 

  5. Wang, D.S., Song, S.W., Xiong, B., Liu, W.M.: Quantized vortices in a rotating Bose–Einstein condensate with spatiotemporally modulated interaction. Phys. Rev. A 84, 053607 (2011)

    Article  Google Scholar 

  6. Wang, D.S., Hu, X.H., Hu, J.P., Liu, W.M.: Quantized quasi-two-dimensional Bose–Einstein condensates with spatially modulated nonlinearity. Phys. Rev. A 81, 025604 (2010)

    Article  Google Scholar 

  7. Lü, X., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the GerdjikovCIvanov model. Nonlinear Dyn. 82, 1211–1220 (2015)

    Article  Google Scholar 

  8. Wang, D.S., Han, W., Shi, Y.R., Li, Z.D., Liu, W.M.: Dynamics and stability of stationary states for the spin-1 Bose–Einstein condensates in a standing light wave. Commun. Nonlinear. Sci. Numer. Simulat 36, 45C57 (2016)

    MathSciNet  Google Scholar 

  9. Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Article  Google Scholar 

  10. Wang, D.S., Wei, X.Q.: Integrability and exact solutions of a two-component Korteweg–de Vries system. App. Math. Lett. 51, 60–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tsuchida, T., Wadati, M.: The coupled modified korteweg–de Vries equations. J. Phys. Soc. Jpn. 67, 1175–1187 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, W.J., Tian, B., Li, M., Jiang, Y., Qu, Q.X., Wang, P., Sun, K.: Symbolic computation of solitons in the normal dispersion regime of inhomogeneous optical fibres. Quantum Electron. 41(6), 545–551 (2011)

    Article  Google Scholar 

  13. Lambert, F., Springael, J.: Soliton equations and simple combinatorics. Acta Appl. Math. 102, 147–178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, M., Xu, T.: Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time symmetric potential. Phys. Rev. E 91(3), 033202 (2015)

    Article  MathSciNet  Google Scholar 

  15. Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simulat. 31, 40–46 (2016)

    Article  Google Scholar 

  16. Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205–208 (1992)

    Article  MathSciNet  Google Scholar 

  17. Li, M., Tian, B., Liu, W.J., Zhang, H.Q., Meng, X.H., Xu, T.: Soliton-like solutions of a derivative nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dyn. 62(4), 919–929 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Priya, N.V., Senthilvelan, M.: On the characterization of breather and rogue wave solutions and modulation instability of a coupled generalized nonlinear Schrödinger equations. Wave Motion 54, 125–133 (2015)

    Article  MathSciNet  Google Scholar 

  19. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  MATH  Google Scholar 

  20. Lü, X., Ma, W.X., Chen, S.T., Khalique, C.M.: A note on rational solutions to a Hirota–Satsuma-like equation. App. Math. Lett. 58, 13–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, T., Xu, X.M.: Single- and double-hump femtosecond vector solitons in the coupled Sasa–Satsuma system. Phys. Rev. E 87(032913), 1–6 (2013)

    Google Scholar 

  22. Ohta, Y., Wang, D.S., Yang, J.K.: General N-Dark–Dark solitons in the coupled nonlinear Schrödinger equations. Stud. Appl. Math. 127(4), 345–371 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qiu, D.Q., Zhang, Y.S., He, J.S.: The rogue wave solutions of a new (2 + 1)-dimensional equation. Commun. Nonlinear Sci. Numer. Simulat. 30, 307–315 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alphahelical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simulat. 32, 241–261 (2016)

    Article  Google Scholar 

  25. Vasanthi, C.C., Latha, M.M.: Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions in (2 + 1) dimensions. Commun. Nonlinear Sci. Numer. Simulat. 28, 109–122 (2015)

    Article  MathSciNet  Google Scholar 

  26. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, B.L., Ling, L.M.: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations. Chin. Phys. Lett. 28, 110202 (2011)

    Article  Google Scholar 

  28. Li, M., Xiao, J.H., Jiang, Y., Wang, M., Tian, B.: Bound-state dark/antidark solitons for the coupled mixed derivative nonlinear Schrödinger equations in optical fibers. Eur. Phys. J. D 66, 297–310 (2012)

    Article  Google Scholar 

  29. Wright, O.C.: Near homoclinic orbits of the focusing nonlinear Schrödinger equation. Nonlinearity 12, 1277–1278 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tai, K., Hasegawa, A., Tomita, A.: Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56, 135–138 (1986)

    Article  Google Scholar 

  31. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11272023, 11271362, 11201501, 11375030 and 11571389, Beijing Natural Science Foundation under Grant No. 1153004, Beijing Nova program 45 No. Z131109000413029, Beijing Finance Funds of Natural Science Program for Excellent Talents No. 2014000026833ZK19 and Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HM., Tian, B., Xie, XY. et al. Soliton and rogue-wave solutions for a (2 + 1)-dimensional fourth-order nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Nonlinear Dyn 86, 369–380 (2016). https://doi.org/10.1007/s11071-016-2894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2894-y

Keywords

Navigation