Skip to main content
Log in

Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an adaptive sliding mode technique based on a fractional-order (FO) switching-type control law is designed to guarantee robust stability for uncertain 3D FO nonlinear systems. A novel FO switching-type control law is proposed to ensure the existence of the sliding motion in finite time. Appropriate adaptive laws are shown to tackle the uncertainty and external disturbance. The calculation formula of the reaching time is analyzed and computed. The reachability analysis is visualized to show how to obtain a shorter reaching time. A stability criterion of the FO sliding mode dynamics is derived based on indirect approach to Lyapunov stability. Advantages of the proposed control scheme are illustrated through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Ahn, H.S., Chen, Y.Q.: Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 44, 2985–2988 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965–1969 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Maione, G.: Conditions for a class of rational approximants of fractional differentiators/integrators to enjoy the interlacing property. In: Proceeding of the 18th IFAC World Congr, 18, 13984–13989 (2011)

  5. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: State variable and transients of fractional order differential systems. Comput. Math. Appl. 64(10), 3117–3140 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Li, C., Ma, Y.: Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, 621–633 (2013)

    Article  MATH  Google Scholar 

  7. Maione, G.: On the Laguerre rational approximation to fractional discrete derivative and integral operators. IEEE Trans. Automat. Control 58, 1579–1585 (2013)

    Article  MathSciNet  Google Scholar 

  8. Sun, H., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388(21), 4586C92 (2009)

    Article  Google Scholar 

  9. Machado, J.A.T.: Fractional order modelling of fractional-order holds. Nonlinear Dyn. 70, 789–796 (2012)

    Article  MathSciNet  Google Scholar 

  10. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional order Systems and Controls: Fundamentals and Applications. Springer, London, New York (2010)

    Book  Google Scholar 

  11. Luo, Y., Chen, Y.Q., Pi, Y.: Experimental study of fractional order proportional derivative controller synthesis for fractional order systems. Mechatronics 21, 204–214 (2011)

    Article  Google Scholar 

  12. Yin, C., Stark, B., Chen, Y.Q., Zhong, S.M.: Adaptive minimum energy cognitive lighting control: integer order vs fractional order strategies in sliding mode based extremum seeking. Mechatronics 23, 863–872 (2013)

    Article  Google Scholar 

  13. Li, R., Chen, W.: Lyapunov-based fractional-order controller design to synchronize a class of fractional-order chaotic systems. Nonlinear Dyn. 76, 785–795 (2014)

    Article  Google Scholar 

  14. Yin, C., Chen, Y.Q., Zhong, S.M.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear system. Automatica 50, 3173–3181 (2014)

    Article  MathSciNet  Google Scholar 

  15. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, New York (1992)

    Book  MATH  Google Scholar 

  16. Liu, J.K., Wang, X.H.: Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation. Springer, Tsinghua University Press, Berlin, Beijing (2012)

    Google Scholar 

  17. Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Phys. D 237, 2628–2637 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hosseinnia, S.H., Ghaderi, R., Ranjbar, N.A., Mahmoudian, M., Momani, S.: Sliding mode synchronization of an uncertain fractional order chaotic system. Comput. Appl. Math. 59, 1637–1643 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Phys. A 387, 57–70 (2008)

    Article  MathSciNet  Google Scholar 

  21. Wang, X., Zhang, X., Ma, C.: Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn. 69, 511–517 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yin, C., Zhong, S., Chen, W.: Design of sliding mode controller for a class of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17, 356–366 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, R., Yang, S.: Robust synchronization of two different fractional-order chaotic systems with unknown parameters using adaptive sliding mode approach. Nonlinear Dyn. 71, 269–278 (2013)

    Article  Google Scholar 

  24. Yin, C., Dadras, S., Zhong, S., Chen, Y.Q.: Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach. Appl. Math. Modell. 37(4), 2469–2483 (2013)

    Article  MathSciNet  Google Scholar 

  25. Tian, X., Fei, S.: Robust control of a class of uncertain fractional-order chaotic systems with input nonlinearity via an adaptive sliding mode technique. Entropy 16, 729–746 (2014)

    Article  MathSciNet  Google Scholar 

  26. Aghababa, M.P.: A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems. Nonlinear Dyn. 73, 679–688 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Efe, M.: Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Trans. Syst. Man Cybern. Part B Cybern. 38, 1561–1570 (2008)

    Article  Google Scholar 

  28. Yin, C., Stark, B., Chen, Y.Q., Zhong, S.M., Lau, E.: Fractional-order adaptive minimum energy cognitive lighting control strategy for the hybrid lighting system. Energy Build. 87, 176–184 (2015)

    Article  Google Scholar 

  29. Yin, C., Chen, Y.Q., Zhong, S.M.: Fractional-order power rate type reaching law for sliding mode control of uncertain nonlinear system. In: Proceeding of 19th International Federation of Automatic Control World Congress, Cape Town, South Africa, 5369–5374 (2014)

  30. Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437–445 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Yin.

Additional information

This work was supported by National Basic Research Program of China (Nos. 61462065 and 51407024) and ZYGX2015KYQD020.

Appendix: Proof of Lemma 2.1

Appendix: Proof of Lemma 2.1

For \(\forall t > 0\), there exists a time interval \((t_k,t_{k + 1} ]\) such that \(t \in (t_k,t_{k + 1} ]\) and \(\sigma (t')\ge 0, \forall t' \in (t_k,t_{k + 1} ]\) if \(\sigma (t)>0\), or \(\sigma (t') \le 0, \forall t'\in (t_k,t_{k + 1} ]\) if \(\sigma (t)<0\). Furthermore, there exists a finite partition given by \( 0=t_0<t_1<t_2<\cdots <t_{k-1 } < t_{k}\), such that: 1) for every interval \((t_i,t_{i + 1} ],(i=0,1,\cdots ,k-1)\), \(\sigma (t') \le 0, \forall t'\in (t_i,t_{i + 1} ]\) or \(\sigma (t') \ge 0, \forall t'\in (t_i,t_{i + 1} ]\); and 2) \(\sigma (t') \le 0,\forall t' \in (t_{i+1} ,t_{i + 2} ]\) if \(\sigma (t') \ge 0,\forall t' \in (t_{i },t_{i+1} ]\) or \(\sigma (t') \ge 0,\forall t' \in (t_{i+1},t_{i + 2} ]\) if \(\sigma (t') \le 0,\forall t' \in (t_{i },t_{i+1} ]\), for every two adjacent intervals \((t_{i },t_{i+1} ] \) and \((t_{i+1},t_{i + 2} ]\). Moreover, we require that the initial time in every \((t_i,t_{i+1}]\) is not equal to zero. From the integral properties, denoting \(t_0=0\), one has

$$\begin{aligned} D_t^{\bar{\beta }} {\mathop {\mathrm{sgn}}} (\sigma (t))= & {} \frac{\left[ {f_0 (t) + f_1 (t) + \cdots + f_k (t)} \right] }{{\varGamma (1 - {\bar{\beta }} )}}, \end{aligned}$$
(53)

where \(f_i (t) = \frac{\mathrm{d}}{{\mathrm{d}t}}\int _{t_i }^{t_{i + 1} } {\frac{{{\mathop {\mathrm{sgn}}} (\sigma (\tau ))}}{{(t - \tau )^{\bar{\beta }} }}\mathrm{d}\tau },(i = 0,1,2, \cdots ,k - 1)\), \(f_k (t) = \frac{\mathrm{d}}{{\mathrm{d}t}}\int _{t_k }^t {\frac{{{\mathop {\mathrm{sgn}}} (\sigma (\tau ))}}{{(t - \tau )^{\bar{\beta }} }}\mathrm{d}\tau }\).

First, we consider \(\sigma (t)>0\). From the above analysis, one has \(\sigma (t') \ge 0,\forall t' \in (t_k,t_{k + 1} ]\). There exists \(t_k=t_{k0} <t_{k1} <t_{k2}< \cdots <t_{kl_k - 1} <t_{kl_k } =t\) in \((t_k,t]\) such that \((t_k,t] = (t_{k0},t_{k1} ] \cup (t_{k1} ,t_{k2} ] \cup \cdots \cup (t_{kl_k - 1},t_{kl_k } ]\). Moreover, \(\sigma (t')\ge 0, \forall t' \in (t_{k0},t_{k1} ]\) in which certain \(\sigma (t') = 0\) just happen at some isolate points \( t'\); \(\sigma (t')\equiv 0, \forall t' \in (t_{k1},t_{k2} ]\); \(\sigma (t')\ge 0, \forall t' \in (t_{k2},t_{k3} ]\) in which certain \(\sigma (t') = 0\) just happen at some isolate points \( t'\); \(\cdots \); \(\sigma (t')\equiv 0, \forall t' \in (t_{kl_k-2},t_{kl_k-1} ]\); \(\sigma (t')\ge 0, \forall t' \in (t_{kl_k-1},t_{kl_k} ]\) in which \(\sigma (t') = 0\) just happen at isolate points \( t'\). In addition, we also require that the initial time in \((t_{kj},t_{kj+1}],(j=0,1,\cdots ,l_{k}-1)\) is not zero. Thus, one has

$$\begin{aligned}&\!\!\!\frac{\mathrm{d}}{{\mathrm{d}t}}\int _{t_{kl_k - 1} }^t {\frac{{{\mathop {\mathrm{sgn}}} (\sigma (\tau ))}}{{(t - \tau )^{\bar{\beta }} }}\mathrm{d}\tau } = (t - t_{kl_k - 1} )^{-{\bar{\beta }}},\nonumber \\&\!\!\! \frac{\mathrm{d}}{{\mathrm{d}t}}\int _{t_{kl_k - 2} }^{t_{kl_k - 1} } {\!\frac{{{\mathop {\mathrm{sgn}}} (\sigma (\tau ))}}{{(t - \tau )^{\bar{\beta }} }}\mathrm{d}\tau }\\&\!\!\! = \frac{\mathrm{d}}{{\mathrm{d}t}}\int _{t_{kl_k - 2} }^{t_{kl_k - 1} } {\!\frac{0}{{(t - \tau )^{\bar{\beta }} }}\mathrm{d}\tau } = 0, \nonumber \\&\!\!\! \frac{\mathrm{d}}{{\mathrm{d}t}}\int _{t_{kl_k - 3} }^{t_{kl_k - 2} } {\!\frac{{{\mathop {\mathrm{sgn}}} (\sigma (\tau ))}}{{(t - \tau )^{\bar{\beta }} }}\mathrm{d}\tau } = (t - t_{kl_k - 3} )^{-{\bar{\beta }}}\\&\!\!\! - (t - t_{kl_k - 2} )^{-{\bar{\beta }}},\nonumber \end{aligned}$$

and so on, one can conclude

$$\begin{aligned} f_k (t)= & {} (t - t_{k0} )^{-{\bar{\beta }}} - (t - t_{k1} )^{-{\bar{\beta }}}+ (t - t_{k2} )^{-{\bar{\beta }}} \nonumber \\&- (t - t_{k3} )^{-{\bar{\beta }}} + \cdots +(t - t_{kl_k - 1} )^{-{\bar{\beta }}}. \end{aligned}$$
(54)

Since \((t - t_{kj} )^{-{\bar{\beta }}} \) is an increasing function in \(t_{kj}\), \( f_k (t) \ge (t - t_{k} )^{-{\bar{\beta }}}\). Then, we discuss \(f_i (t)\). When \(\sigma (t') \ge 0,\forall t' \in (t_i,t_{i + 1} ],\) there exists a time partition \((t_i,t_{i + 1} ] = (t_{i0} ,t_{i1} ] \cup (t_{i1},t_{i2} ] \cup \cdots \cup (t_{il_i - 1} ,t_{il_i } ]\) in which \(t_{i0} = t_i,t_{il_i } = t_{i + 1}\). Moreover, \(\sigma (t')\ge 0, \forall t' \in (t_{i0},t_{i1} ]\) in which \(\sigma (t') = 0\) just happen at some isolate points \( t'\); \(\sigma (t')\equiv 0, \forall t' \in (t_{i1},t_{i2} ]\); \(\sigma (t')\ge 0, \forall t' \in (t_{i2},t_{i3} ]\) in which certain \(\sigma (t') = 0\) just happen at some isolate points \( t'\); and so on. We also claim that the initial time in \((t_{ij},t_{ij+1}],(j=0,1,\cdots ,l_{i}-1)\) is not zero. Considering \((t_{il_i - 1},t_{il_i } ]\), there are two possibilities (i.e., \(\sigma (t') \ge 0,\forall t' \in (t_{il_i - 1},t_{il_i } ]\) or \(\sigma (t') \equiv 0,\forall t' \in (t_{il_i - 1},t_{il_i } ]\)). Hence, \(f_i (t)\) can be calculated, similarly the calculation of \(f_k (t)\), \( f_i (t) \ge (t - t_i )^{-{\bar{\beta }}} - (t - t_{i + 1} )^{-{\bar{\beta }}}, \mathrm{or}\quad \!\!f_i (t) \ge (t - t_{i0} )^{-{\bar{\beta }}} - (t - t_{il_i -1} )^{-{\bar{\beta }}}\).

When \(\sigma (t') \le 0,\forall t' \in (t_i,t_{i + 1} ]\), there exists \((t_i,t_{i + 1} ]\) such that \((t_i,t_{i + 1} ] = (t_{i0} ,t_{i1} ] \cup (t_{i1},t_{i2} ] \cup \cdots \cup (t_{il_i - 1} ,t_{il_i } ]\) in which \(t_{i0} = t_i,t_{il_i } = t_{i + 1}\). Moreover, \(\sigma (t')\le 0, \forall t' \in (t_{i0},t_{i1} ]\) in which \(\sigma (t') = 0\) just happen at some isolate points \( t'\); \(\sigma (t')\equiv 0, \forall t' \in (t_{i1},t_{i2} ]\); \(\sigma (t')\le 0, \forall t' \in (t_{i2},t_{i3} ]\) in which certain \(\sigma (t') = 0\) just happen at some isolate points \( t'\); and so on. We also claim that the initial time in \((t_{ij},t_{ij+1}],(j=0,1,\cdots ,l_{i}-1)\) is not zero. Considering \((t_{il_i - 1},t_{il_i } ]\), there are two possibilities (i.e., \(\sigma (t') \le 0,\forall t' \in (t_{il_i - 1},t_{il_i } ]\) or \(\sigma (t') \equiv 0,\forall t' \in (t_{il_i - 1},t_{il_i } ]\)). Hence, one can conclude that

$$\begin{aligned} \frac{\hbox {d}}{{\mathrm{d}t}}\int _{t_{i0} }^{t_{i1} } {\frac{{{\mathop {\mathrm{sgn}}} (\sigma (\tau ))}}{{(t - \tau )^{\bar{\beta }} }}\mathrm{d}\tau }= & {} (t - t_{i1} )^{-{\bar{\beta }}} - (t - t_{i0} )^{-{\bar{\beta }}},\nonumber \\ \end{aligned}$$
(55)
$$\begin{aligned} \frac{\hbox {d}}{{\mathrm{d}t}}\int _{t_{i1} }^{t_{i2} } {\frac{{{\mathop {\mathrm{sgn}}} (\sigma (\tau ))}}{{(t - \tau )^{\bar{\beta }} }}\mathrm{d}\tau }= & {} \frac{\hbox {d}}{{\mathrm{d}t}}\int _{t_{i1} }^{t_{i2} } {\frac{0}{{(t - \tau )^{\bar{\beta }} }}\mathrm{d}\tau } = 0,\nonumber \\ \end{aligned}$$
(56)

and so on, one has

$$\begin{aligned} f_i (t)= & {} (t - t_{i1} )^{-{\bar{\beta }}} \!-\! (t - t_{i0} )^{-{\bar{\beta }}} \!+\! \cdots + (t - t_{il_i } )^{-{\bar{\beta }}}\\&-(t - t_{il_i - 1} )^{-{\bar{\beta }}} > 0, \end{aligned}$$

or

$$\begin{aligned} f_i (t)= & {} (t - t_{i1} )^{-{\bar{\beta }}} \!-\! (t - t_{i0} )^{-{\bar{\beta }}} \!+\! \cdots \!+\! (t \!-\! t_{il_i -1} )^{-{\bar{\beta }}}\nonumber \\&-(t - t_{il_i - 2} )^{-{\bar{\beta }}} > 0.\nonumber \end{aligned}$$

So, one can conclude \(\sum \limits _{i = 0}^k {f_i (t)} > 0.\) Thus, we have

$$\begin{aligned} D^{\bar{\beta }} {\mathop {\mathrm{sgn}}} (\sigma (t)) = \frac{\left[ {f_0 (t) + f_1 (t) + \cdots + f_k (t)} \right] }{{\varGamma (1 - {\bar{\beta }})}}> 0. \end{aligned}$$
(57)

Next, we consider the second case when \(\sigma (t) < 0\). Similar to the first case, we have

$$\begin{aligned} D^{\bar{\beta }} {\mathop {\mathrm{sgn}}} (\sigma (t)) = \frac{\left[ {f_0 (t) + f_1 (t) + \cdots + f_k (t)} \right] }{{\varGamma (1 - {\bar{\beta }} )}} < 0. \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, C., Cheng, Y., Chen, Y. et al. Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dyn 82, 39–52 (2015). https://doi.org/10.1007/s11071-015-2136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2136-8

Keywords

Navigation