Skip to main content
Log in

Novel chaotic delay systems and electronic circuit solutions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaotic delay systems are abundant in nature and play a significant role in engineering applications and in describing global behaviors of physical systems. This work presents novel first-order chaotic delay systems with the simplest nonlinearities. The exponential, absolute value, and hyperbolic and signum functions, which arise in many systems like electronic circuits, are utilized to generate chaotic delay systems. The practical realization of chaotic delay systems is carried out with all-pass filters and diode-based electronic circuits. Bifurcation diagrams using numerical simulations and experimental results are provided to verify the existence and feasibility of the novel chaotic delay systems. It is expected that the novel chaotic delay systems and the novel electronic implementation circuits will contribute to some practical applications and modeling of physical systems or events in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lu, H., He, Z.: Chaotic behavior in first-order autonomous continuous-time systems with delay. Circuits Syst. I Fundam. Theory Appl. IEEE Trans. 43(8), 700–702 (1996)

  2. Uçar, A.: A prototype model for chaos studies. Int. J. Eng. Sci. 40, 251–258 (2002)

  3. Sprott, J.C.: A simple chaotic delay differential equation. Phys. Lett. A 366, 397–402 (2007)

  4. Corron, N.J., Blakely, J.N., Stahl, M.T.: A matched filter for chaos. Chaos Interdiscip. J. Nonlinear Sci. 20, 023123 (2010)

    Article  Google Scholar 

  5. Blakely, J.N., Corron, N.J.: Experimental observation of delay-induced radio frequency chaos in a transmission line oscillator. Chaos Interdiscip. J. Nonlinear Sci. 14, 1035–1041 (2004)

    Article  Google Scholar 

  6. Thangavel, P., Murali, K., Lakshmanan, M.: Bifurcation and controlling of chaotic delayed cellular neural networks. Int. J. Bifurc. Chaos 8, 2481–2492 (1998)

    Article  Google Scholar 

  7. Larger, L., Goedgebuer, J.-P., Lee, M.W.: Nonlinear delayed differential dynamics for encryption using chaos. In: AIP Conference Proceedings. pp. 375–376. AIP Publishing (2003)

  8. Banerjee, T., Biswas, D., Sarkar, B.C.: Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn. 70, 721–734 (2012)

    Article  MathSciNet  Google Scholar 

  9. Cruz-Hernández, C., Romero-Haros, N.: Communicating via synchronized time-delay Chua’s circuits. Commun. Nonlinear Sci. Numer. Simul. 13, 645–659 (2008)

    Article  MathSciNet  Google Scholar 

  10. Deng, B., Hines, G.: Food chain chaos due to transcritical point. Chaos Interdiscip. J. Nonlinear Sci. 13, 578–585 (2003)

    Article  MathSciNet  Google Scholar 

  11. Khrustova, N., Mikhailov, A.S., Imbihl, R.: Delay-induced chaos in catalytic surface reactions. J. Chem. Phys. 107, 2096–2107 (1997)

    Article  Google Scholar 

  12. Sharkovsky, A.N.: Chaos from a time-delayed Chua’s circuit. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40, 781–783 (1993)

    Article  Google Scholar 

  13. Yongzhen, P., Shuping, L., Changguo, L.: Effect of delay on a predator-prey model with parasitic infection. Nonlinear Dyn. 63, 311–321 (2011)

    Article  MathSciNet  Google Scholar 

  14. Chen, G., Liu, S.T.: Linearization, stability, and oscillation of the discrete delayed logistic system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50, 822–826 (2003)

    Article  MATH  Google Scholar 

  15. Boutle, I., Taylor, R.H.S., Roemer, R.A.: El Nino and the delayed action oscillator. Am. J. Phys. 75, 15 (2007)

    Article  MATH  Google Scholar 

  16. Driver, R.D.: A neutral system with state-dependent delay. J. Differ. Equ. 54, 73–86 (1984)

    Article  MathSciNet  Google Scholar 

  17. Ikeda, K., Daido, H., Akimoto, O.: Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45, 709–712 (1980)

    Article  Google Scholar 

  18. Liao, X., Guo, S., Li, C.: Stability and bifurcation analysis in tri-neuron model with time delay. Nonlinear Dyn. 49, 319–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolchin, V.A.: Bifurcations and self-oscillations in nuclear reactors with linear feedback. At. Energy 52, 386–392 (1982)

    Article  MATH  Google Scholar 

  20. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  21. Prokhorov, M.D., Ponomarenko, V.I.: Encryption and decryption of information in chaotic communication systems governed by delay-differential equations. Chaos Solitons Fractals 35, 871–877 (2008)

    Article  Google Scholar 

  22. Liu, H., Wang, X., Zhu, Q.: Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching. Phys. Lett. A 375, 2828–2835 (2011)

    Article  MATH  Google Scholar 

  23. He, R., Vaidya, P.G.: Time delayed chaotic systems and their synchronization. Phys. Rev. E 59, 4048–4051 (1999)

    Article  MATH  Google Scholar 

  24. Khadra, A., Liu, X.Z., Shen, X.: Impulsively synchronizing chaotic systems with delay and applications to secure communication. Automatica 41, 1491–1502 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kye, W.-H., Choi, M., Kurdoglyan, M.S., Kim, C.-M., Park, Y.-J.: Synchronization of chaotic oscillators due to common delay time modulation. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 046211 (2004)

    Article  Google Scholar 

  26. Li, D., Wang, Z., Zhou, J., Fang, J., Ni, J.: A note on chaotic synchronization of time-delay secure communication systems. Chaos Solitons Fractals 38, 1217–1224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Andò, B., Graziani, S.: Stochastic Resonance: Theory and Applications. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  28. Pham, V.-T., Fortuna, L., Frasca, M.: Implementation of chaotic circuits with a digital time-delay block. Nonlinear Dyn. 67, 345–355 (2012)

    Article  Google Scholar 

  29. Namajūnas, A., Pyragas, K., Tamaševičius, A.: An electronic analog of the Mackey-Glass system. Phys. Lett. A 201, 42–46 (1995)

    Article  Google Scholar 

  30. Mykolaitis, G., Tamaševičius, A., Čenys, A., Bumeliene, S., Anagnostopoulos, A., Kalkan, N.: Very high and ultrahigh frequency hyperchaotic oscillators with delay line. Chaos Solitons Fractals 17, 343–347 (2003)

    Article  MATH  Google Scholar 

  31. Tamasevicius, A., Mykolaitis, G., Bumeliene, S.: Delayed feedback chaotic oscillator with improved spectral characteristics. Electron. Lett. 42, 736–737 (2006)

    Article  Google Scholar 

  32. Yalçin, M.E., Özoguz, S.: N-scroll chaotic attractors from a first-order time-delay differential equation. Chaos Interdiscip. J. Nonlinear Sci. 17, 033112 (2007)

    Article  Google Scholar 

  33. Srinivasan, K., Mohamed, I.R., Murali, K., Lakshmanan, M., Sinha, S.: Design of time delayed chaotic circuit with threshold controller. Int. J. Bifurc. Chaos 21, 725–735 (2011)

    Article  Google Scholar 

  34. Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: Design of time-delay chaotic electronic circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 1888–1896 (2011)

    Article  MathSciNet  Google Scholar 

  35. Tian, Y.-C., Gao, F.: Adaptive control of chaotic continuous-time systems with delay. Phys. D Nonlinear Phenom. 117, 1–12 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Voss, H.U.: Real-time anticipation of chaotic states of an electronic circuit. Int. J. Bifurc. Chaos 12, 1619–1625 (2002)

    Article  Google Scholar 

  37. Horbelt, W., Timmer, J., Voss, H.U.: Parameter estimation in nonlinear delayed feedback systems from noisy data. Phys. Lett. A 299, 513–521 (2002)

  38. Baker, C.T.H.: Retarded differential equations. J. Comput. Appl. Math. 125, 309–335 (2000)

    Article  MathSciNet  Google Scholar 

  39. Ikeda, K., Matsumoto, K.: High-dimensional chaotic behavior in systems with time-delayed feedback. Phys. D 29, 223–235 (1987)

    Article  MATH  Google Scholar 

  40. Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton (1988)

    MATH  Google Scholar 

  41. Wu, X.P., Wang, L.: A Krawiec-Szydlowski model of business cycles with a time delay in capital stock. IMA J. Appl. Math. 79(3), 1–29 (2013)

    Google Scholar 

  42. Szydłowski, M., Krawiec, A., Toboła, J.: Nonlinear oscillations in business cycle model with time lags. Chaos Solitons Fractals 12, 505–517 (2001)

    Article  MATH  Google Scholar 

  43. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics. Academic Press, London (1993)

    MATH  Google Scholar 

  44. Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47, 270–294 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nelson, P.W., Perelson, A.S.: Mathematical analysis of delay differential equation models of HIV-1 infection. Math. Biosci. 179, 73–94 (2002)

    Article  MathSciNet  Google Scholar 

  46. Branin Jr, F.H.: Transient analysis of lossless transmission lines. Proc. IEEE 55, 2012–2013 (1967)

    Article  Google Scholar 

  47. Chang, F.-Y.: Transient analysis of lossless coupled transmission lines in a nonhomogeneous dielectric medium. IEEE Trans. Microw. Theory Tech. 18, 616–626 (1970)

    Article  Google Scholar 

  48. Hutchinson, G.E.: Circular causal mechanisms in ecology. Ann. N. Y. Acad. Sci. 50, 221–246 (1948)

    Article  Google Scholar 

  49. Winder, S.: Analog and Digital Filter Design. Newnes, London (2002)

    Google Scholar 

  50. Chen, L., Yu, X.: On time-delayed feedback control of chaotic systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46, 767–772 (1999)

    Article  MATH  Google Scholar 

  51. Pyragas, K.: Delayed feedback control of chaos. Philos. Trans. Roy. Soc. A 364, 2309–2334 (2006)

    Article  MathSciNet  Google Scholar 

  52. Lakshmanan, M., Senthilkumar, D.V.: Dynamics of Nonlinear Time-Delay Systems. Springer, Berlin (2010)

    Google Scholar 

  53. Tang, K.-S., Man, K.F., Zhong, G.-Q., Chen, G.: Generating chaos via \(\text{ x }{\vert }\text{ x }{\vert }\). IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48, 636–641 (2001)

    Article  MathSciNet  Google Scholar 

  54. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günyaz Ablay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ablay, G. Novel chaotic delay systems and electronic circuit solutions. Nonlinear Dyn 81, 1795–1804 (2015). https://doi.org/10.1007/s11071-015-2107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2107-0

Keywords

Navigation