Skip to main content
Log in

Nurbs-based Timoshenko formulation of a geometrically nonlinear planar beam

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper investigates the nonlinear analysis of planar beams based on the total Lagrangian Timoshenko theory. The isogeometric analysis (IGA) is adopted as the numerical solution technique. Nurbs functions are used to discretize the unknown kinematics, including displacements and rotation, as well as the linearized governing equations. The virtual work principle is employed to derive the nonlinear governing equations and boundary conditions, which are then solved using the Newton-Raphson algorithm. The results of the proposed formulation have been validated by analytical results, as well as through assessments against available numerical results reported in the relevant literature, demonstrating the efficiency and accuracy of the proposed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scaramozzino D, Lacidogna G, Carpinteri A (2020) New trends towards enhanced structural efficiency and aesthetic potential in tall buildings: the case of diagrids. Appl Sci 10(11):3917

    Article  Google Scholar 

  2. De Lorenzis L, Wriggers P, Hughes TJ (2014) Isogeometric contact: a review. GAMM-Mitteilungen 37(1):85–123

    Article  MathSciNet  Google Scholar 

  3. Reddy JN, Wang CM, Lee KH (1997) Relationships between bending solutions of classical and shear deformation beam theories. Int J Solids Struct 34(26):3373–3384

    Article  Google Scholar 

  4. Reissner E (1973) On one-dimensional large-displacement finite-strain beam theory. Stud Appl Math 52(2):87–95

    Article  Google Scholar 

  5. Simo JC (1985) A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49(1):55–70

    Article  Google Scholar 

  6. Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79–116

    Article  Google Scholar 

  7. Jelenić G, Crisfield M (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171(1–2):141–171

    Article  MathSciNet  Google Scholar 

  8. Ghosh S, Roy D (2008) Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam. Comput Methods Appl Mech Eng 198(3–4):555–571

    Article  MathSciNet  Google Scholar 

  9. Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numer Methods Eng 54(12):1775–1788

    Article  MathSciNet  Google Scholar 

  10. Kapania RK, Li J (2003) On a geometrically exact curved/twisted beam theory under rigid cross-section assumption. Comput Mech 30(5):428–443

    Article  Google Scholar 

  11. Mäkinen J (2007) Total Lagrangian Reissner’s geometrically exact beam element without singularities. Int J Numer Methods Eng 70(9):1009–1048

    Article  MathSciNet  Google Scholar 

  12. Auricchio F, Carotenuto P, Reali A (2008) On the geometrically exact beam model: a consistent, effective and simple derivation from three-dimensional finite-elasticity. Int J Solids Struct 45(17):4766–4781

    Article  Google Scholar 

  13. Beirão da Veiga L, Lovadina C, Reali A (2012) Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods. Comput Methods Appl Mech Eng 241:38–51

    Article  MathSciNet  Google Scholar 

  14. Auricchio F, Beirão da Veiga L, Kiendl J, Lovadina C, Reali A (2013) Locking-free isogeometric collocation methods for spatial Timoshenko rods. Comput Methods Appl Mech Eng 263:113–126

    Article  MathSciNet  Google Scholar 

  15. Weeger O, Yeung S-K, Dunn ML (2017) Isogeometric collocation methods for Cosserat rods and rod structures. Comput Methods Appl Mech Eng 316:100–122

    Article  MathSciNet  Google Scholar 

  16. Shabana A (1996) Finite element incremental approach and exact rigid body inertia. ASME J Mech Des 118(2):171–178

    Article  Google Scholar 

  17. Gerstmayr J, Shabana AA (2006) Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn 45:109–130

    Article  Google Scholar 

  18. Sopanen JT, Mikkola AM (2003) Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn 34:53–74

    Article  Google Scholar 

  19. Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  Google Scholar 

  20. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons, Singapore

    Book  Google Scholar 

  21. Vo D, Nanakorn P, Bui TQ (2020) A total Lagrangian Timoshenko beam formulation for geometrically nonlinear isogeometric analysis of spatial beam structures. Acta Mechanica 231:3673–3701

    Article  MathSciNet  Google Scholar 

  22. Zhang G, Alberdi R, Khandelwal K (2016) Analysis of three-dimensional curved beams using isogeometric approach. Eng Struct 117:560–574

    Article  Google Scholar 

  23. Cazzani A, Malagù M, Turco E (2016) Isogeometric analysis of plane-curved beams. Math Mech Solids 21(5):562–577

    Article  MathSciNet  Google Scholar 

  24. Borković A, Kovačević S, Radenković G, Milovanović S, Guzijan-Dilber M (2018) Rotation-free isogeometric analysis of an arbitrarily curved plane Bernoulli-Euler beam. Comput Methods Appl Mech Eng 334:238–267

    Article  MathSciNet  Google Scholar 

  25. Bauer AM, Breitenberger M, Philipp B, Wüchner R, Bletzinger K-U (2016) Nonlinear isogeometric spatial Bernoulli beam. Comput Methods Appl Mech Eng 303:101–127

    Article  MathSciNet  Google Scholar 

  26. Yin S, Hale JS, Yu T, Bui TQ, Bordas SP (2014) Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates. Compos Struct 118:121–138

    Article  Google Scholar 

  27. Zhao G, Du X, Wang W, Liu B, Fang H (2017) Application of isogeometric method to free vibration of Reissner-Mindlin plates with non-conforming multi-patch. Comput-Aided Des 82:127–139

    Article  MathSciNet  Google Scholar 

  28. Liu N, Jeffers AE (2018) A geometrically exact isogeometric Kirchhoff plate: Feature-preserving automatic meshing and \(c^{1}\) rational triangular Bézier spline discretizations. Int J Numer Methods Eng 115(3):395–409

    Article  Google Scholar 

  29. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914

    Article  MathSciNet  Google Scholar 

  30. Dornisch W, Müller R, Klinkel S (2016) An efficient and robust rotational formulation for isogeometric Reissner-Mindlin shell elements. Comput Methods Appl Mech Eng 303:1–34

    Article  MathSciNet  Google Scholar 

  31. Echter R, Oesterle B, Bischoff M (2013) A hierarchic family of isogeometric shell finite elements. Comput Methods Appl Mech Eng 254:170–180

    Article  MathSciNet  Google Scholar 

  32. Bandara K, Cirak F (2018) Isogeometric shape optimisation of shell structures using multiresolution subdivision surfaces. Comput-Aided Des 95:62–71

    Article  Google Scholar 

  33. Bathe K-J, Lee P-S, Hiller J-F (2003) Towards improving the MITC9 shell element. Comput Struct 81(8–11):477–489

    Article  Google Scholar 

  34. Nanakorn P, Vu LN (2006) A 2D field-consistent beam element for large displacement analysis using the total Lagrangian formulation. Finite Elem Anal Des 42(14–15):1240–1247

    Article  Google Scholar 

  35. Wang CM, Reddy J, Lee KH (2000) Shear deformable beams and plates: relationships with classical solutions. Elsevier, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Sahnoun Abdelfettah.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelfettah, S. Nurbs-based Timoshenko formulation of a geometrically nonlinear planar beam. J Eng Math 146, 12 (2024). https://doi.org/10.1007/s10665-024-10362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-024-10362-2

Keywords

Navigation