Skip to main content
Log in

Identification of tire forces using Dual Unscented Kalman Filter algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 07 November 2014

Abstract

Nowadays, application of active control systems in vehicles has been developed in order to increase safety and steerability. In these systems, using an appropriate dynamic model can be very effective in increasing the accuracy of simulations and analysis. Tire-road forces are crucial in vehicle dynamics and control since they are the only forces that a vehicle experiences from the ground and have maximum uncertainty on vehicle dynamic model. In order to simulate the non-linear regimes of vehicle motion, the ‘Pacejka’ tire model is being utilized. In this paper, a dynamic model with Dual Unscented Kalman Filter algorithm has been utilized to identify the lateral forces, side slip angle, and normal forces of tires. In order to solve the non-linear least squares problem, these parameters were given as input to the hybrid Levenberg–Marquardt and quasi Newton algorithm to find the Pacejka tire model coefficients in the offline mode. Four degrees of freedom vehicle model combined with Pacejka tire model are used for simulation in various maneuvers. Results show appropriate compatibility with CarSim software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(a_x \) :

Longitudinal acceleration

\(a_y \) :

Lateral acceleration

m:

Vehicle mass

\(m_s\) :

Sprung mass

\(I_z\) :

Moment of inertia about z axis

\(I_x\) :

Moment of inertia about x axis

\(I_{xz}\) :

Product of moment of inertia

a:

Distance of vehicle C.G from front axle

b:

Distance of vehicle C.G from rear axle

l:

Distance between two axle

h:

Height of C.G

\(h_s\) :

Height of roll center

T:

Track

\(\rho \) :

Density of air

\(C_d\) :

Drag coefficient

\(A_p\) :

Frontal area projection

\(\mu _R\) :

Rolling resistance coefficient

\(K_\phi \) :

Roll stiffness

\(D_\phi \) :

Roll damping

\(\delta \) :

Wheel steer angle

\(\alpha \) :

Tire side slip angle

\(F_z\) :

Tire normal load

\(F_y\) :

Lateral tire force

\(\sigma \) :

Relaxation length

BCD:

Tire lateral stiffness

C:

Shape factor

D:

Peak factor

B:

Stiffness factor

E:

Curvature factor

\(S_h\) :

Horizontal shift

\(S_v\) :

Vertical shift

\(a_0 ,\ldots ,a_{13}\) :

Parameters of Pacejka -tire model

\(\gamma \) :

Camber angle

\(\tau \) :

Step size

u:

Longitudinal velocity

v:

Lateral velocity

r:

Yaw rate

\(\phi \) :

Roll angle

p:

Roll rate

References

  1. Pacejka, H.B.: Tyre and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2002)

    Google Scholar 

  2. Doumiati, M., Victorino, A., Charara, A., Lechner, D.: Lateral load transfer and normal forces estimation for vehicle safety: experimental test. Veh. Syst. Dyn. 47(12), 1511–1533 (2009)

    Article  Google Scholar 

  3. Wilkin, M.A., Manning, W.J., Crolla, D.A., Levesley, M.C.: Use of an extended Kalman filter as a robust tyre force estimator. Veh. Syst. Dyn. 44, 50–59 (2006)

    Article  Google Scholar 

  4. Lakshmanan, S., Park, J.H., Rakkiyappan, R., Jung, H.Y.: State estimator for neural networks with sampled data using discontinuous Lyapunov functional approach. J. Nonlinear Dyn. 46, 99–108 (2013). doi:10.1016/j.neunet.2013.05.001

    MathSciNet  Google Scholar 

  5. Baffet, G., Charara, A., Lechner, D.: Estimation of vehicle sideslip, tire force and wheel cornering stiffness. Control Eng. Pract. 17, 1255–1264 (2009)

    Article  Google Scholar 

  6. Juang, J.N.: Continuous-time bilinear system identification. Nonlinear Dyn. 39(1–2), 79–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Best, M.C., Gordon, T.J., Dixon, P.J.: An extended adaptive Kalman filter for real-time state estimation of vehicle handling dynamics. Veh. Syst. Dyn. 34, 57–75 (2000)

    Article  Google Scholar 

  8. Mashadi, B., Mahmoodi, M., Kakae, A., Hoseini, R.: Vehicle path following control in the presence of driver inputs. In Proceeding, IMechE Part K: Journal of Multi-body Dynamics (2012)

  9. Cho, W., Yoon, J., Yim, S., Koo, B., Yi, K.: Estimation of tire forces for application to vehicle stability control. IEEE Trans. Veh. Technol. 59, 638–649 (2010)

    Article  Google Scholar 

  10. Rajamani, R., Piyabongkarn, D., Lew, J.Y., Yi, K., Phanomchoeng, G.: Tire road friction coefficient estimation. IEEE Control Syst. Mag. 30(4), 54–69 (2010)

    Article  MathSciNet  Google Scholar 

  11. Erdogan, G., Alexander, L., Rajamani, R.: Estimation of tire-road friction coefficient using a novel wireless piezoelectric tire sensor. IEEE Sens. J. 11(2), 267–279 (2011)

    Article  Google Scholar 

  12. M’sirdi, N.K., Rabhi, A., Zbiri, N., Delanne, Y.: Vehicle road interaction modeling for estimation of contact forces. Veh. Syst. Dyn. 43, 403–411 (2005)

    Article  Google Scholar 

  13. Wenzel, T.A., Burnham, K.J., Blundell, M.V., Williams, R.A.: Dual extended Kalman filter for vehicle state and parameter estimation. Veh. Syst. Dyn. 44(2), 153–171 (2006)

  14. Siegrist, P.M., Mcaree, P.R.: Tyre-force estimation by Kalman inverse filtering: applications to off-highway mining trucks. Veh. Syst. Dyn. 44(12), 921–937 (2006)

    Article  Google Scholar 

  15. Sierra, C., Tseng, E., Jain, A., Peng, H.: Cornering stiffness estimation based on vehicle lateral dynamics. Veh. Syst. Dyn. 44, 24–38 (2006)

    Article  Google Scholar 

  16. Best, M.C.: Identifying tyre models directly from vehicle test data using an extended Kalman filter. Veh. Syst. Dyn. 48(2), 171–187 (2010)

    Article  Google Scholar 

  17. Doumiati, M., Victorino, A., Lechner, D., Baffet, G., Charara, A.: Observers for vehicle tyre/road forces estimation: experimental validation. Veh. Syst. Dyn. 48(11), 1345–1378 (2010)

  18. Berkhizir, N., Phan, M.Q., Betti, R., Longman, R.: Identification of discrete-time bilinear systems through equivalent linear models. Nonlinear Dyn. 69, 2065–2078 (2012)

  19. Gillespie, T.D.: Fundamentals of Vehicle Dynamics, 1st edn. SAE International, New York (1992)

    Book  Google Scholar 

  20. Haykin, S.: Kalman Filtering and Neural Networks. Wiley, New York (2001)

    Book  Google Scholar 

  21. Julier, S., Uhlmann, J., Durrantwhyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wenzel, T.A., Burnham, K.J., Blundell, M.V., Williams, R.A.: Dual extended Kalman filter for vehicle state and parameter estimation. Veh. Syst. Dyn. 44(2), 153–171 (2006)

    Article  Google Scholar 

  23. Madsen, K., Nielsen, H.B., Tingleff, O.: Methods for Nonlinear Least Squares Problems, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  24. Asadi, K., Ahmadian, H., Jalali, H.: Micro/macro slip damping in beams with frictional contact interface. J. Sound. Vib. 331(21), 4704–47128 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mahmoodi-k.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoodabadi, I., Ramezani, A.A., Mahmoodi-k, M. et al. Identification of tire forces using Dual Unscented Kalman Filter algorithm. Nonlinear Dyn 78, 1907–1919 (2014). https://doi.org/10.1007/s11071-014-1566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1566-z

Keywords

Navigation