Skip to main content
Log in

Multiscale behavior of financial time series model from Potts dynamic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A financial agent-based time series model is developed and investigated by the Potts model. Potts model, a generalization of the Ising model to more than two components, is a model of interacting spins on a crystalline lattice which describes the interaction strength among the agents. We present numerical research in conjunction with statistical analysis and correlation analysis in an attempt to study the volatilities of financial time series. The fluctuation behavior of logarithmic returns of the proposed model is investigated by multiscale entropy and time-dependent intrinsic correlation. Furthermore, in order to obtain a robust conclusion, the daily returns of Shanghai Composite Index and Shenzhen Component Index are considered, and the comparisons of return behaviors between the simulation data and the actual data are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amaral, L.A.N., Buldyrev, S.V., Havlin, S., Salinger, M.A., Stanley, H.E.: Power law scaling for a system of interacting units with complex internal structure. Phys. Rev. Lett. 80, 1385–1388 (1998)

    Article  Google Scholar 

  2. Baxter, R.J.: Potts model at the critical temperature. J. Phys. C 6, 445 (1973)

    Article  Google Scholar 

  3. Bentes, S.R., Menezes, R., Mendes, D.A.: Stock market volatility: an approach based on Tsallis entropy. http://arxiv.org/abs/0809.4750 (2008)

  4. Blöte, H.W.J., Nightingale, M.P.: Critical behaviour of the two-dimensional potts model with a continuous number of states; a finite size scaling analysis. Phys. A 112, 405–465 (1982)

    Article  MathSciNet  Google Scholar 

  5. Chen, M.F.: From Markov Chains to Non-Equilibrium Particle Systems, 2nd edn. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  6. Chen, X.Y., Wu, Z., Huang, N.E.: The time-dependent intrinsic correlation based on the empirical mode decomposition. Adv. Adapt. Data Anal. 2, 233–265 (2010)

  7. Corsi, F., Mittnik, S., Pigorsch, C., Pigorsch, U.: The volatility of realized volatility. Econom. Rev. 27, 46–78 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 021906 (2005)

    Article  MathSciNet  Google Scholar 

  9. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89, 068102 (2002)

    Article  Google Scholar 

  10. Darbellay, G.A., Wuertz, D.: The entropy as a tool for analysing statistical dependences in financial time series. Phys. A 287, 429–439 (2000)

    Article  Google Scholar 

  11. Deng, Y., Blöte, H.W.J., Nienhuis, B.: Backbone exponents of the two-dimensional \(q\)-state Potts model: a Monte Carlo investigation. Phys. Rev. E 69, 026114 (2004)

    Article  Google Scholar 

  12. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer-Verlag, New York (1985)

    Book  MATH  Google Scholar 

  13. Fang, W., Wang, J.: Effect of boundary conditions on stochastic Ising-like financial market price model. Bound. Value Probl. 2012, 1–17 (2012)

    Article  Google Scholar 

  14. Fang, W., Wang, J.: Fluctuation behaviors of financial time series by a stochastic Ising system on a Sierpinski carpet lattice. Phys. A 392, 4055–4063 (2013)

    Article  MathSciNet  Google Scholar 

  15. Fang, W., Wang, J.: Statistical properties and multifractal behaviors of market returns by Ising dynamic systems. Int. J. Mod. Phys. C 23, 1250023 (2012)

    Article  Google Scholar 

  16. Flandrin, P., Goncalves, P.: Empirical mode decompositions as data-driven wavelet-like expansions. Int. J. Wavelets Multiresolut. Inf. Process. 2, 477–496 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gabaix, X., Gopikrishanan, P., Plerou, V., Stanley, H.E.: A theory of power-law distributions in financial market fluctuations. Nature 423, 267–270 (2003)

    Article  Google Scholar 

  18. Gliozzi, F.: Simulation of potts models with real \(q\) and no critical slowing down. Phys. Rev. E 66, 016115 (2002)

    Article  Google Scholar 

  19. Hartmann, A.K.: Calculation of partition functions by measuring component distributions. Phys. Rev. Lett. 94, 05060 (2005)

    Article  Google Scholar 

  20. Huang, N.E., Shen, Z., Long, S.R., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903–995 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huang, Y.X., Schmitt, F.G., Hermand, J.P., et al.: Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and wavelet leaders. Phys. Rev. E 84, 016208 (2011)

    Article  Google Scholar 

  22. Ilinski, K.: Physics of Finance: Gauge Modeling in Non-Equilibrium Pricing. Wiley, New York (2001)

    Google Scholar 

  23. Krawiecki, A.: Microscopic spin model for the stock market with attractor bubbling and heterogeneous agents. Int. J. Mod. Phys. C 16, 549–559 (2005)

    Article  MATH  Google Scholar 

  24. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall/CRC, London (2000)

    Google Scholar 

  25. Liggett, T.M.: Interacting Particle Systems. Springer-Verlag, New York (1985)

  26. Lux, T., Marchesi, M.: Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397, 498–500 (1999)

    Article  Google Scholar 

  27. Machado, J.A.T.: Complex dynamics of financial indices. Nonlinear Dyn. 74, 287–296 (2013)

    Article  Google Scholar 

  28. Machado, J.A.T., Duarte, F.B., Duarte, G.M.: Analysis of financial data series using fractional Fourier transform and multidimensional scaling. Nonlinear Dyn. 65, 235–245 (2011)

    Article  Google Scholar 

  29. Mandelbrot, B.B.: Fractals and Scaling in Finance. Springer, New York (1997)

    Book  MATH  Google Scholar 

  30. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  31. Menezes, R., Ferreira, N.B., Mendes, D.: Co-movements and asymmetric volatility in the Portuguese and US stock markets. Nonlinear Dyn. 44, 359–366 (2006)

    Article  MATH  Google Scholar 

  32. Pincus, S., Kalman, R.E.: Irregularity, volatility, risk and financial market time series. Proc. Natl. Acad. Sci. USA 101, 13709–13714 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Risso, W.A.: The informational efficiency and the financial crashes. Res. Int. Bus. Finance 22, 396–408 (2008)

    Article  Google Scholar 

  34. Rolski, T., Schmidt, V., Schmidli, H., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, Chichester (1999)

    Book  MATH  Google Scholar 

  35. Stanley, H.E., Gabaix, X., Gopikrishnan, P., Plerou, V.: Economic fluctuations and statistical physics: the puzzle of large fluctuations. Nonlinear Dyn. 44, 329–340 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tavares, A.B., Curto, J.D., Tavares, G.N.: Modelling heavy tails and asymmetry using ARCH-type models with stable Paretian distributions. Nonlinear Dyn. 51, 231–243 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, J.: Supercritical Ising model on the lattice fractal-the Sierpinski carpet. Mod. Phys. Lett. B 20, 409–414 (2006)

    Article  MATH  Google Scholar 

  38. Wang, J.: The estimates of correlations in two-dimensional Ising model. Phys. A 388, 565–573 (2009)

    Article  MathSciNet  Google Scholar 

  39. Wang, J., Wang, Q.Y., Shao, J.G.: Fluctuations of stock price model by statistical physics systems. Math. Comput. Model. 51, 431–440 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, J., Deng, S.: Fluctuations of interface statistical physics models applied to a stock market model. Nonlinear Anal. 9, 718–723 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wang, T.S., Wang, J., Zhang, J.H., Fang, W.: Voter interacting systems applied to Chinese stock markets. Math. Comput. Simul. 81, 2492–2506 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wu, F.Y.: The potts model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  Google Scholar 

  43. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009)

    Article  Google Scholar 

  44. Zhang, J.H., Wang, J., Shao, J.G.: Finite-range contact process on the market return intervals distributions. Adv. Complex Syst. 13, 643–657 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zunino, L., Zanin, M., Tabak, B.M., Prez, D.G., Rosso, O.A.: Forbidden patterns, permutation entropy and stock market inefficiency. Phys. A 388, 2854–2864 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors were supported in part by National Natural Science Foundation of China Grant No. 71271026 and Grant No. 10971010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Wang, J. Multiscale behavior of financial time series model from Potts dynamic system. Nonlinear Dyn 78, 1065–1077 (2014). https://doi.org/10.1007/s11071-014-1496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1496-9

Keywords

Navigation