Skip to main content
Log in

Measuring the correlation complexity between return series by multiscale complex analysis on Potts dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Financial market is a complex evolving dynamic system with high volatilities and noises, and the modeling and the analyzing of financial time series are regarded as the rather challenging tasks in financial research. In this work, by applying the Potts dynamic system, a random financial time series model is developed in an attempt to uncover the empirical laws in finance, where the particles in the Potts model are introduced to imitate the attitudes of market traders. Through the computer simulation on the selected data, we present the numerical research in conjunction with statistical analysis and nonlinear analysis to investigate the volatilities of financial time series. The fluctuation behavior of logarithmic returns of the proposed model is investigated by MCID, q-MCID and EMD-MCID analyses. Furthermore, in order to obtain a robust conclusion, the complex dynamic behaviors of return time series of the model are investigated by using multiaspect chaos-exploring methods, phase space reconstruction, correlation dimension analysis, largest Lyapunov exponent, density of Kolmogorov–Sinai entropy and Kolmogorov–Sinai entropy universality. The corresponding daily return behaviors of SSE, SZSE, S&P500, IXIC, FTSE, Nikkei and AEX are considered for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amaral, L.A.N., Buldyrev, S.V., Havlin, S., Salinger, M.A., Stanley, H.E.: Power law scaling for a system of interacting units with complex internal structure. Phys. Rev. Lett. 80, 1385–1388 (1998)

    Article  Google Scholar 

  2. Bouchaud, J.P., Potters, M.: Theory of Financial Risk and Ferivative Pricing: From Statistical Physics to Risk Management. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  3. Stanley, H.E., Gabaix, X., Gopikrishnan, P., Plerou, V.: Economic fluctuations and statistical physics: the puzzle of large fluctuations. Nonlinear Dyn. 44, 329–340 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Plerou, V., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Econophysics: financial time series from a statistical physics point of view. Phys. A 279, 443–456 (2000)

    Article  Google Scholar 

  5. Iori, G.: A threshold model for stock return volatility and trading volume. Int. J. Theor. Appl. Financ. 3, 467–472 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Peters, E.E.: Fractal Market Analysis: Applying Chaos Theory to Investment and Economics. Wiley, New York (1994)

    Google Scholar 

  7. Tsay, R.S.: Analysis of Financial Time Series. Wiley, Hoboken (2005)

    Book  MATH  Google Scholar 

  8. Grech, D., Pamula, G.: Multifractality of nonlinear transformations with application in finances. Acta Phys. Pol. A 123, 529–537 (2013)

    Article  Google Scholar 

  9. Hong, W.J., Wang, J.: Multiscale behavior of financial time series mode l from Potts dynamic system. Nonlinear Dyn. 78, 1065–1077 (2014)

    Article  Google Scholar 

  10. Gabaix, X., Gopikrishanan, P., Plerou, V., Stanley, H.E.: A theory of power-law distributions in financial market fluctuations. Nature 423, 267–270 (2003)

    Article  Google Scholar 

  11. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall/CRC, London (2000)

    MATH  Google Scholar 

  12. Vargas, J.A.R., Grzeidak, E., Hemerly, E.M.: Robust adaptive synchronization of a hyperchaotic finance system. Nonlinear Dyn. 80, 239–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lux, T.: Estimation of an agent-based model of investor sentiment formation in financial markets. J. Econ. Dyn. Control 36, 1284–1302 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lux, T., Marchesi, M.: Scaling and criticality in a stochastic multiagent model of a financial market. Nature 397, 498–500 (1999)

    Article  Google Scholar 

  16. Stauffer, D.: Can percolation theory be applied to the stock market. Ann. Phys. 7, 529–538 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, F., Wang, J.: Statistical analysis and forecasting of return interval for SSE and model by lattice percolation system and neural network. Comput. Ind. Eng. 62, 198–205 (2012)

    Article  Google Scholar 

  18. Zivot, E., Wang, J.H.: Modeling Financial Time Series with S-PLUS. Springer, New York (2006)

    MATH  Google Scholar 

  19. Mike, S., Farmer, J.D.: An empirical behavioral model of liquidity and volatility. J. Econ. Dyn. Control 32, 200–234 (2008)

    Article  Google Scholar 

  20. Zhang, J., Small, M.: Complex network from pseudo periodic time series: topology versus dynamics. Phys. Rev. Lett. 96, 238701 (2006)

    Article  Google Scholar 

  21. Niu, H.L., Wang, J.: Volatility clustering and long memory of financial time series and financial price model. Digit. Signal Process. 23, 489–498 (2013)

    Article  MathSciNet  Google Scholar 

  22. Zhang, J.H., Wang, J.: Modeling and simulation of the market fluctuations by the finite range contact systems. Simul. Model. Pract. Theory 18, 910–925 (2010)

    Article  Google Scholar 

  23. Durrett, R.: Lecture Notes on Particle Systems and Percolation. Wadsworth & Brooks, Pacific Grove (1998)

    MATH  Google Scholar 

  24. Liggett, T.M.: Stochastic Interacting Systems: Contact Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  25. Bornholdt, S., Wagner, F.: Stability of money: phase transitions in an Ising economy. Phys. A 316, 453–468 (2002)

    Article  MATH  Google Scholar 

  26. Fang, W., Wang, J.: Fluctuation behaviors of financial time series by a stochastic Ising system on a Sierpinski carpet lattice. Phys. A 392, 4055–4063 (2013)

    Article  Google Scholar 

  27. Elliott, R.J., Siu, T.K., Fung, E.S.: Filtering a nonlinear stochastic volatility model. Nonlinear Dyn. 67, 1295–1313 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grollau, S., Rosinberg, M.L., Tarjus, G.: The ferromagnetic \(q\)-state Potts model on three-dimensional lattices: a study for real values of \(q\). Phys. A 296, 460–482 (2001)

    Article  MATH  Google Scholar 

  29. Ananikian, N., Artuso, R., Chakhmakhchyan, L.: Superstable cycles for antiferromagnetic Q-state Potts and three-site interaction Ising models on recursive lattices. Commun. Nonlinear Sci. Numer. Simul. 19, 3671–3678 (2014)

    Article  MathSciNet  Google Scholar 

  30. Baxter, R.J.: Potts model at the critical temperature. J. Phys. C Solid State Phys. 6, 445 (1973)

    Article  Google Scholar 

  31. Deng, Y., Bl\(\ddot{o}\)te, H.W.J., Nienhuis, B.: Backbone exponents of the two-dimensional \(q\)-state Potts model: a Monte Carlo investigation. Phys. Rev. E 69, 026114 (2004)

  32. Hartmann, A.K.: Calculation of partition functions by measuring component distributions. Phys. Rev. Lett. 94, 05060 (2005)

    Article  Google Scholar 

  33. Wu, F.Y.: The potts model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  MathSciNet  Google Scholar 

  34. Ross, S.M.: An Introduction to Mathematical Finance. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  35. Gabaix, X.: Power laws in economics and finance. Annu. Rev. Econ. 1, 255–294 (2009)

    Article  Google Scholar 

  36. Liu, D.: Particle-scale modelling of financial price dynamics. Commun. Nonlinear Sci. Numer. Simul. 43, 282–295 (2017)

    Article  MathSciNet  Google Scholar 

  37. Fang, W., Wang, J.: Statistical properties and mutifractal behavior of market returns by Ising dynamic systems. Int. J. Mod. Phys. C 23, 1250023 (2012)

    Article  MATH  Google Scholar 

  38. Gabaix, X., Gopikrishnan, P., Plerou, V., Stanley, H.E.: Are stock market crashes outliers. Working Paper, Massachusetts Institute of Technology (2005)

  39. Grau-Carles, P.: Long-range power-law correlations in stock returns. Phys. A 299, 521–527 (2001)

    Article  MATH  Google Scholar 

  40. Gustavo, E.A.P.A.B., Eamonn, J.K., Oben, M.T., Vinícius, M.A.S.: CID: an efficient complexity-invariant distance for time series. Data Min. Knowl. Discov. 28, 634–669 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang, N.E., Zheng, S., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series ayalysis. Proc. R. Soc. Lond. Ser. A 454, 903–995 (1998)

    Article  MATH  Google Scholar 

  42. Huang, Y.X., Schmitt, F.G., Hermand, J.P., et al.: Arbitraryorder Hilbert spectral analysis for time series possessing scaling statistics: comparison study with detrended fluctuation analysis and wavelet leaders. Phys. Rev. E 84, 016208 (2011)

    Article  Google Scholar 

  43. Qian, X.Y., Gu, G.F., Zhou, W.X.: Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of antipersistent processes. Phys. A 390, 4388–4395 (2011)

    Article  Google Scholar 

  44. Guhathakurta, K., Mukherjee, I., Chowdury, A.R.: Empirical mode decomposition analysis of two different financial time series and their comparison. Chaos Solitons Fractals 37, 1214–1227 (2008)

    Article  Google Scholar 

  45. Niu, H.L., Wang, J.: Phase and multifractality analyses of random price time series by finite-range interacting biased voter system. Comput. Stat. 29, 1045–1063 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, B., Wang, J., Fang, W.: Volatility behavior of visibility graph EMD financial time series from Ising interacting system. Phys. A 432, 301–314 (2015)

    Article  Google Scholar 

  47. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009)

    Article  Google Scholar 

  48. Fang, S.C., Chan, H.L.: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space. Pattern Recognit. 42, 1824–1831 (2009)

    Article  Google Scholar 

  49. Takens, F.: Detecting Strange Attractors Inturbulence. Springer, Berlin (1981)

    MATH  Google Scholar 

  50. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712 (1980)

    Article  Google Scholar 

  51. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determin- ing embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403 (1992)

    Article  Google Scholar 

  53. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. A 9, 189–208 (1983)

    MathSciNet  MATH  Google Scholar 

  54. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, Y.Q., Wang, X.Y.: A new image encryption algorithm based on non-adjacent coupled map lattices. Appl. Soft Comput. 26, 10–20 (2015)

    Article  Google Scholar 

  57. Zhang, Y.Q., Wang, X.Y.: A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice. Inf. Sci. 273, 329–351 (2014)

    Article  Google Scholar 

  58. Zhang, Y.Q., Wang, X.Y.: Spatiotemporal chaos in mixed linear–nonlinear coupled logistic map lattice. Phys. A 402, 104–118 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were supported by National Natural Science Foundation of China, Grant No. 71271026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, J. Measuring the correlation complexity between return series by multiscale complex analysis on Potts dynamics. Nonlinear Dyn 89, 2703–2721 (2017). https://doi.org/10.1007/s11071-017-3619-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3619-6

Keywords

Navigation