Skip to main content

Advertisement

Log in

Assessment of WRF numerical model forecasts using different lead time initializations during extreme precipitation events over Macaé city, Rio de Janeiro (Brazil)

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The ability to forecast extreme precipitation events has become increasingly important over the last decades due to their significant impacts on society and properties. In this context, the reliability degree related to the warnings issues and a possible natural hazard is relevant. Thus, research aimed to evaluate the strengths and weaknesses of numerical forecasts can also be addressed as prevention measures. In this context, first, this study endeavored to identify the extreme precipitation events in Macaé city, Brazil. Secondly, evaluate the precipitation forecast using the Weather Research and Forecasting (WRF) model using different lead time initialization and three grids domain (27, 09, and 03 km); and investigate the thermodynamic and dynamic physical processes related to the extreme events found. From the qualitative and quantitative evaluation of the precipitation forecast, it was possible to verify that the 24 h lead time initialization presented the best performance compared to the other ones. The third domain also presented the statistical results of the precipitation forecasts, suggesting that the increased horizontal resolution enabled the model to represent mesoscale physical processes and better use high-resolution input data, such as the mountainous region of Macaé city. It was possible to verify the importance of conditional atmospheric instability, moisture offer at lower atmospheric levels, and dynamic trigger mechanisms to originate the extreme rainfall events from the thermodynamic and dynamic parameters. Lastly, we sought to show the challenges of forecasting the extreme rainfall and natural hazards imminence warnings and exploring the daily operational challenges verified in the monitoring centers and civil defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used are open access. From Weather Prevision Center and Climate Studies of Brazilian National Space Research Institute (https://www.cptec.inpe.br/) and the forecast data from Global Forecast System (GFS) belonging to National Centers for Environmental Information (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets). This work presents figures and tables as supplementary material.

References

  • Bahiense JM, Júnior JEFF, Costa LF, Charge LT (2015) Monitoramento hidrológico quantitativo no estado do Rio de Janeiro: Importância, histórico e modernização. http://www.evolvedoc.com.br/sbrh/detalhes-991. Acessed 03 jan 2021

  • Barcellos PCL, Cataldi M (2020) Flash flood and extreme rainfall forecast through one-way coupling of wrf-smap models: natural hazards in Rio de Janeiro state. Atmosphere 11(8):834. https://doi.org/10.3390/atmos11080834

    Article  Google Scholar 

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical Weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139:3887–3905

    Article  Google Scholar 

  • Barros AP, Kim G, Williams E, Nesbitt SW (2004) Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat Hazard Earth Syst 4(1):29–51

    Article  Google Scholar 

  • Barthlott C, Corsmeier U, Meissner C et al (2006) (2006) The influence of mesoscale circulation systems on triggering convective cells over complex terrain. Atmos Res 81:150–175

    Article  Google Scholar 

  • Blanchard DO (1998) Mesoscale convective patterns of the Southern High Plains. Bull Amer Meteor Soc 71:994–1005

    Article  Google Scholar 

  • Boers N, Bookhagen B, Marwan N, Kurths J (2015) Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range. Clim Dyn 46:601–617. https://doi.org/10.1007/s00382-015-2601-6

    Article  Google Scholar 

  • Bonnet SM, Dereczynski CP, Nunes AMB (2018) Caracterização sinótica e climatológica de eventos de chuva pós-frontal no Rio de Janeiro. Revista Brasileira De Meteorologia 33:547–557

    Article  Google Scholar 

  • Brooks HE (2006) A global view of severe thunderstorms: Estimating the current distribution and possible future changes In: Preprints, Severe Local Storms Special Symposium, Amer Meteor Soc, Atlanta

  • Clark AJ, Gallus WA Jr, Weisman ML (2010) Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM. Weather Forecast 25:1495–1509

    Article  Google Scholar 

  • Clark P, Roberts N, Lean H, Ballard S, Charlton-Perez C (2015) Convection-permitting models: a step-change in rainfall forecasting. Meteor Appl 23:165–181

    Article  Google Scholar 

  • Colle BA, Wolfe JB, Steenburgh WJ, Kingsmill DE, Cox JAW, Shafer JC (2005) High-resolution simulations and microphysical validation of an orographic precipitation event over the Wasatch Mountains during IPEX IOP3. Mon Weather Rev 133:2947–2971

    Article  Google Scholar 

  • CPTEC (2021) Centro de Previsão do Tempo e Estudos Climáticos. http://www.cptec.inpe.br. Acessed 02 Jan 2021

  • Dacre HF, Clark PA, Martinez-Alvarado O, Stringer MA, Lavers DA (2015) How do atmospheric rivers form? Bull Amer Meteorol Soc 96(8):1243–1255. https://doi.org/10.1175/BAMS-D-14-00031

    Article  Google Scholar 

  • Dhiram K, Wang Z (2014) Evaluation on radar reflectivity-rainfall rate (Z-R) relationships for Guyana. Atmos Clim Sci 6:489–499. https://doi.org/10.4236/acs.2016.64039

    Article  Google Scholar 

  • Diniz F de A, Ramos AM, Rebello ERG (2018) Brazilian climate normals for 1981–2010. 13

  • Done J, Davis CA, Weisman ML (2004) The next generation of NWP: explicit forecasts of convection using the weather research and forecast (WRF) model. Atmos Sci Lett 5:110–117

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • EM-DAT (2021) – Emergency Events Database. The OFDA/CRED International Disaster Database. http://www.em-dat.net/. Acessed em 02 jan 2021

  • Fernández-Alvarez JC, Pérez-Alarcon A, Batista-Leyva AJ, Díaz-Rodríguez O (2020) Evaluation of precipitation forecast of system: numerical tools for hurricane forecast. Adv Meteorol 2020:1–16. https://doi.org/10.1155/2020/8815949

    Article  Google Scholar 

  • Ferreira NJ, Correia AA, Ramirez MCV (2004) Synoptic scale features of the tropospheric circulation over tropical South America during the WETAMC TRMM/LBA experiment. Atmosfera 17(1):13–30

    Google Scholar 

  • Figueroa SN, Bonatti JP, Kubota PY et al (2016) The Brazilian global atmospheric model (BAM): performance for tropical rainfall forecasting and sensitivity to convective scheme and horizontal resolution. Weather Forecast 31:1547–1572. https://doi.org/10.1175/WAF-D-16-0062.1

    Article  Google Scholar 

  • Figueroa SN, Satyamurty P, Silva Dias PL (1995) Simulations of the summer circulation over the South American region with an eta coordinate model. J Atmos Sci 52:1573–1584

    Article  Google Scholar 

  • Fritsch JM, Forbes GS (2001) Mesoscale convective systems. severe convective storms. Meteor Monogr Amer Meteor Soc 50:323–356

    Article  Google Scholar 

  • Fritsch JM, Carbone RE (2004) Improving quantitative precipitation forecasts in the warm season: a USWRP research and development strategy. Bull Amer Meteorol Soc 85:955–965

    Article  Google Scholar 

  • Gensini VA, Haberlie AM, Marsh PT (2020) Practically perfect hindcasts of severe convective storms. Bull Amer Meteor Soc 101:E1259–E1278. https://doi.org/10.1175/BAMS-D-19-0321.1

    Article  Google Scholar 

  • GFS (2021) Global Forecast Sysrem. https://www.ncdc.noaa.gov/. Accessed 02 jan 2021

  • Gitau M (2018) Patterns in indices of daily and seasonal rainfall extremes: Southwest Florida Gulf Coastal zone. Climate 6:83. https://doi.org/10.3390/cli6040083

    Article  Google Scholar 

  • Haklander AJ, Van Delden A (2003) Thunderstorm predictors and theirforecast skill for the Netherlands. Atmos Res 67–68:273–299

    Article  Google Scholar 

  • Hallak R, Filho AJP (2012) Análise de desempenho de índices de instabilidade atmosférica na previsão de fenômenos convectivos na mesoescala na região metropolitana de São Paulo entre 28 de Janeiro e 04 de Fevereiro de 2004. Rev Bras Meteor 27(2):173–206

    Article  Google Scholar 

  • Heideman KF, Fristch JM (1998) Forcing mechanisms and other characteristics of significant summertime precipitation. Weather Forecast 3:115–130

    Article  Google Scholar 

  • Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • IBGE (2021) Instituto Brasileiro de Geografica e Estatística. https://www.ibge.gov.br/. Acessed 02 jan 2021

  • INEA (2021) Instituto Estadual do Ambiente. http://www.inea.rj.gov.br. Acessed 02 jan 2021

  • INMET (2021) Instituto Nacional de Meteorologia. http://www.inmet.gov.br. Acessed 02 jan 2021

  • Jee J-B, Kim S (2017) Sensitivity study on high-resolution WRF precipitation forecast for a heavy rainfall event. Atmosphere 8:96. https://doi.org/10.3390/atmos8060096

    Article  Google Scholar 

  • Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918

    Article  Google Scholar 

  • Fernández-Alvarez JC, Pérez-Alarcon A, Batista-Leyva AJ, Díaz-Rodríguez O (2020) Evaluation of precipitation forecast of system: numerical tools for hurricane forecast. Advances in Meteorology. https://doi.org/10.1155/2020/8815949

    Article  Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteor 43:170–181

    Article  Google Scholar 

  • Kain JS, Weiss SJ, Levit JJ, Baldwin ME, Bright DR (2006) Examination of convection-allowing configurations of the WRF model for the prediction of severe convective Weather: the SPC/NSSL spring program 2004. Weather Forecast 21:167–181

    Article  Google Scholar 

  • Kunz M (2007) The skill of convective parameters and indices to predict isolated and severe thunderstorms. Nat Hazards Earth Syst Sci 7:327–342

    Article  Google Scholar 

  • Lean JW, Clark PA, Dixon M, Roberts NM, Fitch A, Forbes R, Halliwell C (2008) Characteristics of high resolution versions of the met office unified model for forecasting convection over the United Kingdom. Mon Weather Rev 136:3408–3424

    Article  Google Scholar 

  • Liebmann B, Kiladis G, Vera C, Saulo C, Carvalho L (2004) Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J Clim 17:3829–3842

    Article  Google Scholar 

  • Lopez P (2007) Cloud and precipitation parameterizations in modeling and variational data assimilation: a review. J Atmos Sci 64:3766–3784

    Article  Google Scholar 

  • Marques MA (2008) Qualidade de vida no município de Macaé-RJ: Análise por geoprocessamento. Thesis, Universidade Federal do Rio de Janeiro

  • Martin A, Ralph FM, Demirdjian R et al (2018) Evaluation of atmospheric river predictions by the WRF model using aircraft and regional mesonet observations of orographic precipitation and its forcing. J Hydrometeorol 19(7):1097–1113

    Article  Google Scholar 

  • Mattioli V, Westwater ER, Cimini D, Liljegren JC, Lesh BM, Gutman SI, Schmidlin FJ (2007) Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic winter radiometric experiment. J Atmos Ocean Technol. https://doi.org/10.1175/JTECH1982.1

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Moya-Álvarez A, Gálvez J, Holguín A et al (2018) Extreme rainfall forecast with the WRF-ARW Model in the Central Andes of Peru. Atmosphere 9:362. https://doi.org/10.3390/atmos9090362

    Article  Google Scholar 

  • Müller OV, Lovino MA, Berbery EH (2016) Evaluation of WRF model forecasts and their use for hydroclimate monitoring over Southern South America. Weather Forecast 31:1001–1017. https://doi.org/10.1175/WAF-D-15-0130.1

    Article  Google Scholar 

  • Muniz JFE (2019) A expansão urbana de Macaé: Uma análise a partir das ações dos agentes sociais no espaço. Dissertation, Universidade Federal do Rio de Janeiro

  • Nascimento EL (2005) Previsão de tempestades severas utilizando-se parâmetros convectivos e modelos de mesoescala: uma estratégia operacional adotável no Brasil? Rev Bras Meteor 20(1):113–122

    Google Scholar 

  • Oakley NS, Lancaster JT, Kaplan ML, Ralph FM (2017) Synoptic conditions associated with cool season post-fire debris flows in the transverse ranges of southern California. Nat Hazards. https://doi.org/10.1007/s11069-017-2867-6

    Article  Google Scholar 

  • Onderlinde MJ, Fuelberg HE (2014) A parameter for forecasting tornadoes associated with landfalling tropical cyclones. Weather Forecast 29:1238–1255

    Article  Google Scholar 

  • Pal S, Chang H-I, Castro CL, Dominguez F (2019) Credibility of convection-permitting modeling to improve seasonal precipitation forecasting in the Southwestern United States. Front Earth Sci. https://doi.org/10.3389/feart.2019.00011

    Article  Google Scholar 

  • Pal S, Dominguez F, Dillon ME, Alvarez J, Garcia CM, Nesbitt SW, Gochis D (2020) Hydrometeorological observations and modeling of an extreme rainfall event using WRF and WRF-hydro during the RELAMPAGO field campaign in Argentina. J Hydrometeorol 22:331–351. https://doi.org/10.1175/JHM-D-20-0133.1,2020

    Article  Google Scholar 

  • Quadro MFL (1994) Estudo de episódios de zonas de convergência do Atlântico Sul (ZCAS) sobre a América do Sul. M.Sc. Thesis, Instituto Nacional de Pesquisas Espaciais.

  • Rajczak J, Pall P, Schär C (2013) Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine region: projections of extreme precipitation. J Geophys Res Atmos 118:3610–3626. https://doi.org/10.1002/jgrd.50297

    Article  Google Scholar 

  • Ratnam MV, Santhi YD, Rajeevan M, Rao SVB (2013) Diurnal variability of stability indices observed using radiosonde observations over a tropical station: comparison with microwave radiometer measurements. Atmos Res 124:21–33

    Article  Google Scholar 

  • Rozante JR, Moreira DS, de Goncalves LGG, Vila DA (2010) Combining TRMM and surface observations of precipitation: technique and validation over South America. Weather Forecast 25:885–894. https://doi.org/10.1175/2010WAF2222325.1

    Article  Google Scholar 

  • Rudolph JV, Friedrich K (2014) Dynamic and thermodynamic predictors of vertical structure in radar-observed regional precipitation. J Clim 27:2143–2158

    Article  Google Scholar 

  • Saedi A, Saghafian B, Moazami S, Aminyavari S (2020) Performance evaluation of sub-daily ensemble precipitation forecasts. Meteorol Appl. https://doi.org/10.1002/met.1872

    Article  Google Scholar 

  • Satyamurty P, Mattos LF (1989) Climatological lower tropospheric frontogenesis in midlatitudes due to horizontal deformation and divergence. Mon Weather Rev 117:1355–1364

    Article  Google Scholar 

  • Schwarz CS (2014) Reproducing the September 2013 record-breaking rainfall over the Colorado front range with high-resolution WRF model forecasts. Weather Forecast 29:393–402

    Article  Google Scholar 

  • Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2011) The AROME France convective-scale operational model. Mon Weather Rev 139:976–991

    Article  Google Scholar 

  • Silva Dias MAF (1987) Sistemas de mesoescala e previsão de tempo a curto prazo. Rev Bras Meteor 2:133–150

    Google Scholar 

  • Silva Dias MAF (2000) Índices de instabilidade para previsão de chuva e tempestades severas. Departamento de Ciências Atmosféricas. https://www.redemet.aer.mil.br/uploads/2014/04/indice_sWeathert.pdf. Acessed date 20 March 2021

  • Silva FP, Rotunno Filho OC, Justi da Silva MGA, Sampaio RJ, Pires GD, Magalhães AAA (2020a) Observed and estimated atmospheric thermodynamic instability using radiosonde observations over the city of Rio de Janeiro, Brazil. Meteorol Atmos Phys 132:297–314. https://doi.org/10.1007/s00703-019-00688-3

    Article  Google Scholar 

  • Silva FP, Rotunno Filho OC, Justi da Silva MGA, Sampaio RJ, Pires GD, Magalhães AAA (2020b) Identification of rainfall and atmospheric patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil). Nat Hazards 103:3745–3764. https://doi.org/10.1007/s11069-020-04153-y

    Article  Google Scholar 

  • Silvestro F, Rebora N, Cummings G, Ferraris L (2015) Experiences of dealing with flash floods using an ensemble hydrological nowcasting chain: implications of communication, accessibility and distribution of the results. J Flood Risk Manag. https://doi.org/10.1111/jfr3.1216

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. Tech. Rep. TN-475+STR, NCAR

  • Stephan CC, Klingaman NP, Vidale PL, Turner AG, Demory ME, Guo L (2017) A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part i: Interannual Variability Clim Dyn Publ. https://doi.org/10.1007/s00382-017-3882-8

    Article  Google Scholar 

  • Teixeira MS, Satyamurty P (2007) Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil. Mon Weather Rev 135:598–617

    Article  Google Scholar 

  • Wang S, Sobel AH (2017) Factors controlling rain on small tropical islands: diurnal cycle, large-scale wind speed, and topography. J Atmos Sci 74:3515–3532. https://doi.org/10.1175/JAS-D-16-0344.1

    Article  Google Scholar 

  • Weisheimer A, Befort DJ, MacLeod D, Palmer T, O’Reilly C, Strømmen K (2020) Seasonal forecasts of the 20th century. Bull Amer Meteor Soc. https://doi.org/10.1175/BAMS-D-19-0019.1,inpress

    Article  Google Scholar 

  • Weisman ML, Davis CA, Wang W, Manning KM, Klemp JB (2008) Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Weather Forecast 23:407–437

    Article  Google Scholar 

  • Weiss SJ, Pyle ME, Janjic Z, Bright DR, Kain JS, DiMego GJ (2008) The operational High Resolution Window WRF Model runs at NCEP: Advantages of multiple model runs for severe convective Weather forecasting. 24th Conf. on Severe Local Storms, Savannah, GA, Amer Meteor Soc P10.8. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_142192.htm.]

  • Westwater ER, Boba Stankov B, Cimini D, Han Y, Joseph A, Lesht BM, Long CN (2003) Radiosonde humidity soundings and microwave radiometers during Nauru99. J Atmos Ocean Technol 20:953–971

    Article  Google Scholar 

  • Wetzel SW, Martin JE (2001) An operational ingredients-based methodology for forecasting midlatitude winter season precipitation. Weather Forecast 16:156–167

    Article  Google Scholar 

  • Weusthoff T, Ament F, Arpagaus M, Rotach MW (2010) Assessing the benefits of convection-permitting models by neighborhood verification: examples from MAP D-PHASE. Mon Weather Rev 138:3418–3433

    Article  Google Scholar 

  • Wiegand L, Twitchett A, Schwierz C, Knippertz P (2011) Heavy precipitation at the Alpine South side and Saharan dust over central Europe: a predictability study using TIGGE. Weather Forecast 26:957–974. https://doi.org/10.1175/WAF-D-10-05060.1

    Article  Google Scholar 

  • Wilks DS (1995) Statistical methods in the atmospheric sciences: an introduction, vol 59. Academic Press, San Diego, p 467

    Book  Google Scholar 

  • Wilson JW, Brandes EA (1979) Radar measurement of rainfall: a summary. Bull Am Meteor Soc 60:1048–1058. https://doi.org/10.1175/15200477(1979)060%3c1048:RMORS%3e2.0.CO;2

    Article  Google Scholar 

  • WMO (1989). World Meteorological Organization. Calculation of monthly and annual 30-year standard normal, Geneva

  • WMO (2010) World meteorological organization. manual on the global data-processing and forecasting system, Geneva

  • Wu D, Peters-Lidard C, Tao W-K, Peterson W (2016) Evaluation of NU-WRF rainfall forecasts for IFloods. J. Hydrometeor 17:1317–1335

    Article  Google Scholar 

  • Yan H Jr (2016) An evaluation of QPF from the WRF, NAM, and GFS models using multiple verification methods over a small domain. Weather Forecast 31:17

    Article  Google Scholar 

  • Zhang Z (2014) HWRF based ensemble prediction system using perturbations from GEFS and stochastic convective trigger function. Tropical Cyclone Res Rev 3:17

    Google Scholar 

Download references

Acknowledgements

The authors would also like to recognize the support of Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) by means of the support through the Project FAPERJ –Edital Nº 12/2018—PROGRAMA “Apoio às Universidades Estaduais—UERJ, UENF e UEZO—2018”—Projeto Clima e Energia Proc. n.º E-26/010.101.145/2018.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) by means of the Project FAPERJ—Edital Nº 12/2018—PROGRAMA “Apoio às Universidades Estaduais—UERJ, UENF e UEZO—2018”—Projeto Clima e Energia Proc. n.º E-26/010.101.145/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Polifke da Silva.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that they are relevant to the content of this article. The authors have no financial or proprietary interests in any material discussed in this article.

Human and animal rights

This research not involves Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.P., da Silva, A.S., da Silva, M.G.A.J. et al. Assessment of WRF numerical model forecasts using different lead time initializations during extreme precipitation events over Macaé city, Rio de Janeiro (Brazil). Nat Hazards 110, 695–718 (2022). https://doi.org/10.1007/s11069-021-04964-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-021-04964-7

Keywords

Navigation