Skip to main content

Advertisement

Log in

Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Landslides are one of the most damaging disastrous phenomena that frequently lead to serious problems in hilly areas. The Namchi region of South Sikkim district as a part of Eastern Himalayas is not an exception to it. In the present study, multi-criteria analysis technique is used for landslide hazard zonation mapping. Various thematic layers, namely slope, rainfall distribution map, lineament density, drainage density, slope aspect, geology, land use/land cover and soil map, were integrated in a GIS platform (ArcGIS 10.1) to delineate landslide hazard zone. Analytic hierarchy process was used to determine the weight values of different factors. Relative rating values are assigned for the subclasses of each thematic layer based on their corresponding impact on the landslide triggers, and within a thematic layer, each class was assigned an ordinal rating from 0 to 9. The landslide hazard zonation map of Namchi region was produced based on weighted overly techniques. The landslide hazard map of Namchi region is divided into five vulnerable zones, namely very low-, low-, moderate-, high- and very high-hazard zones. Resulted landslide hazard zonation map was further validated with field study and geospatial technology-based analysis. The findings demonstrate high-landslide-hazard zones are associated with areas of active erosive processes (steep slopes/cut slopes/lineaments). The results indicate the villages Bomtar, Jorethang, Kopchey, Donok, Namthang, Sumbuk, Longchok, Mamring, Turung, Mikkhola, etc. are highly prone to landslides. The final landslide hazard zonation map can be used for the landslide hazard prevention, proper planning of future infrastructure and geoenvironmental development in Namchi region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Source: Pal et al. (2008)

Fig. 6
Fig. 7
Fig. 8

Source: Geological Survey of India

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are thankful to the Indian Institute of Remote Sensing (IIRS), Indian Space Research Organization (ISRO) and Indian Meteorological Department (IMD) for continuous support during the work. We are thankful to Dr. Vladimír Schenk (Editor in Chief, Natural Hazards) for suggesting modifications, which improved our manuscript. The authors also extend their thanks to anonymous reviewers for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Bera.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, A., Mukhopadhyay, B.P. & Das, D. Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim. Nat Hazards 96, 935–959 (2019). https://doi.org/10.1007/s11069-019-03580-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-019-03580-w

Keywords

Navigation