Skip to main content
Log in

Recent northeast Italian tornado events: lesson learned for improving structures

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Increasing intensity and frequency of tornadoes have been reported in Europe in the last decades, and in Italy, in particular in the northeast area, including Veneto, Friuli Venezia Giulia and Trentino Alto Adige. The public consciousness and the meteorological control of this risk are sufficiently established in the USA. The European continent and the northeast of Italy do not exhibit a similar state, although the tornado damages induced are increasing and becoming of economic relevance. Studies and research are diffused and have reached a detailed level, being able to correlate tornado intensity to a detailed damage state for a wide amount of building classes. But, codes and standard, both in USA and in the whole European continent, have not been developed for tornado loadings. For this reason, to fill the gap between studies, research and observational data, in this study Italian wind extreme events are presented and discussed first. In a second part, the damage assessment results of the most extreme events recorded in the northeast of Italy (from F3 to F5, Fujita scale) from 1905 to 2017 are presented. Codes and standard showing the lack of design and verification procedure are presented in the third part. Finally, a tornado-resistant building classification is presented to enforce the consciousness that new codes and standard could protect people from extreme events, decreasing dramatically the devastation of not so rare phenomena also for Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Adapted from Tominaga et al. (2015)

Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abbey RF (1976) Risk probabilities associated with tornado wind speeds. In: Proceedings of the symposium on Tornadoes: assessment of knowledge and implications for man, Lubbock, Texas, Texas University

  • Abinanti V, Bianchino D, Gobbi A, Mistrorigo Z, Perini MV, Rabito M, Randi P, Rosa D, Scortegagna T, Valeri D (2015) Il tornado di Pianiga, Dolo e Mira dell’8 luglio 2015: Analisi meteorologica, tecniche di monitoraggio, studio fotogrammetrico, analisi dei danni e percorso del vortice, testimonianze degli storm chasers e della popolazione, aspetti emotivi e cognitivi del trauma psicologico, climatologia dei tornado in Veneto, limiti alla predicibilità del tornado, consigli di autoprotezione

  • Aglietti F (1793–1800) Memorie per Servire alla Storia Letteraria e Civile

  • Alexander C, Wurman J (2008) Updated mobile radar climatology of supercell tornado structures and dynamics. Preprints, 24th conference on severe local storms. American Meteorological Society, Savannah, GA; 19.4. http://ams.confex.com/ams/pdfpapers/141821.pdf. Accessed 2 Jan 2014

  • Antonescu B, Schultz DM, Lomas F, Kuhne T (2016) Tornadoes in Europe: A synthesis of the observational datasets. Mon. Wea. Rev. 144:2445–2480

    Article  Google Scholar 

  • Antonescu B, Schultz DM, Holzer A, Groenemeijer P (2017) Tornadoes in Europe: an underestimated threat. Bull Am Meteorol Soc 98:713–728

    Article  Google Scholar 

  • Antonescu B, Fairman JG, Schultz DM (2018) What is the worst that could happen? Reexamining the 24–25 June 1967 tornado outbreak over Western Europe. Weather Clim Soc 10:323–340

    Article  Google Scholar 

  • Archive of the Riese Pio X Municipality (2010) Municipality of Riese Pio X, Photographical archive of the tornado event of the June 6th, 2009

  • ARPAV (2009) Climatological Bulletin of the ARPA-Veneto Society. ARPA, Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto

  • ARPAV (2015) Climatological bulletin of the ARPA-veneto society. ARPA, Agenzia 7 Regionale per la Prevenzione e Protezione Ambientale del Veneto

  • ARPAV (2016) The tornado recent phenomena. ARPAV-Veneto Regional Agency of Environment. The meteorological phenomena in Veneto, Padova

  • ARPAV (2017) Meteorological data. The meteorological phenomena in Veneto, Padova

  • ASCE (2013) Minimum design loads for buildings and other structures. ASCE/SEI 7-10. American Society of Civil Engineers, Reston

  • Ashley W, Strader S, Rosencrants T, Krmenec A (2014) Spatiotemporal changes in tornado hazard exposure: the case of the expanding bull’s eye effect in Chicago, IL. Weather Clim Soc 6:175–193

    Article  Google Scholar 

  • Barbi A, Monai M, Zardini F (2009) Meteorological operational services for civil protection in Veneto region (North-Eastern Italy). In: Proceedings of the 11th Plinius conference on Mediterranean Storms, Barcelona

  • Bechini R, Giaiotti DB, Manzato A, Stel F, Micheletti S (2001) The June 4th 1999 severe weather episode in San Quirino, Italy: A tornado event? Atmos Res 56:213–232

    Article  Google Scholar 

  • Bertato M, Giaiotti DB, Manzato A, Stel F (2003) An interesting case of tornado in Friuli-Northeastern Italy. Atmos Res 67–68:3–21

    Article  Google Scholar 

  • Bissolli P, Grieser J, Dotzek N, Welsch M (2007) Tornadoes in Germany 1950–2003 and their relation to particular weather conditions. Glob Planet Change 57(1–2):124–138

    Article  Google Scholar 

  • Case J, Sarkar P, Sritharan S (2014) Effect of low-rise building geometry on tornado-induced loads. In: 12th Americas conference on wind engineering, Seattle

  • Church CR, Snow JT, Baker GL, Agee EM (1979) “Characteristics of tornado-like vortices as a function of swirl ratio: a laboratory investigation. J Atmos Sci 36:1755–1776

    Article  Google Scholar 

  • Dakshina GDS, Kruse BJ, Yongsheng W (2008) Spatial dependencies in wind-related housing damage. Nat Hazards 2008(47):317–330. https://doi.org/10.1007/s11069-008-9221-y

    Article  Google Scholar 

  • Doswell CA (2003) Societal impacts of severe thunderstorms and tornadoes: lessons learned and implications for Europe. Atmos Res 67–68:135–152

    Article  Google Scholar 

  • Doswell CA (2015) Severe convective storms in the European societal context. Atmos Res 158–159:210–215

    Article  Google Scholar 

  • Doswell C, Burgess D (1988) On some issues of United States tornado climatology. Mon Weather Rev 116:495–501

    Article  Google Scholar 

  • Doswell C, Brooks H, Dotzek N (2009) On the implementation of the enhanced Fujita scale in the USA. Atmos Res 93:554–563

    Article  Google Scholar 

  • Dotzek N (2001) Tornadoes in Germany. Atmos Res 56(1–4):233–251

    Article  Google Scholar 

  • Dotzek N (2003) An updated estimate of tornado occurrence in Europe. Atmos Res 67–68:153–161

    Article  Google Scholar 

  • Dotzek N, Groenemeijer P, Feuerstein B (2008) Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos Res 93(1–3):275–586

    Google Scholar 

  • Dotzek N, Groenemeijer P, Feuerstein B, Holzer AM (2009) Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos Res 93:575–586

    Article  Google Scholar 

  • Edwards R, LaDue J, Ferree J, Scharfenberg K, Maier C, Coulbourne W (2013) Tornado intensity estimation: past, present and future. Bull Am Meteorol Soc 94(5):641–653

    Article  Google Scholar 

  • EN1991-4 (2004) Actions on structures. Part 1–4: general actions—wind actions. CEN-European Committee for Standardization, Brussels

    Google Scholar 

  • EN1998 (2005) Design of structures for earthquake resistance. CEN-European Committee for Standardization, Brussels

    Google Scholar 

  • ESWD (2017) European Severe Weather Database. European Sever Storm Laboratory, Wessling

    Google Scholar 

  • FEMA (2015) Safe rooms for tornadoes and hurricanes guidance for community and residential safe rooms. FEMA P-361, 3rd edn, Mar 2015

  • Fink H, Brucher T, Ermert V, Kruger A, Pinto JG (2009) The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat Hazards Earth Syst Sci 9(405–423):2009

    Google Scholar 

  • Fujita TT (1971) Proposed characterization of tornadoes and hurricanes by area and intensity. SMRP research report 91, University of Chicago, Chicago

  • Fujita TT (1981) Tornadoes and downbursts in the context of generalized planetary scales. J Atmos Sci 38:1511–1534

    Article  Google Scholar 

  • Fujita TT (1992) Mystery of severe storms. University of Chicago Press, Chicago

    Google Scholar 

  • Fujita TT, Pearson T (1973) Experimental classification of tornadoes in FPP scale. SMRP research report 98, University of Chicago, Chicago, IL

  • Gazzettino (2017) Historical Archives of the Gazzettino Journal. Archivio Storico della Città di Venezia (1906–1931); Biblioteca Civica di Belluno (1897–1949); Biblioteche Città Metropolitana di Venezia (1931–1985); Accademia dei Concordi di Rovigo (1985–2017); Digital Edition (2000–2017). Mestre, Venezia

  • Giaiotti DB, Giovannoni M, Pucillo A, Stel F (2007) The climatology of tornadoes and waterspouts in Italy. Atmos Res 83(2–4):534–541

    Article  Google Scholar 

  • Gopu V, Levitan M (2012) Best design practices for wood frame construction in tornado prone areas. World 15:19

    Google Scholar 

  • Grazulis TP (1993) Significant tornadoes. Environmental Films, Inc., St. Johnsbury

    Google Scholar 

  • Groenemeijer P, Pucik T, Holzer AM, Antonescu B, Riemann-Campe K, Schultz DM, Kühne T, Feuerstein B, Brooks HE, Doswell CA, Koppert H, Sausen R (2017) Severe convective storms in Europe: ten years of research and education at the European severe storms laboratory. Bull Amer Meteor Soc 98:2641–2651

    Article  Google Scholar 

  • Haan F, Sarkar PP, Gallus W (2008) Design, construction and performance of a large tornado simulator for wind engineering applications. Eng Struct 30:1146–1159

    Article  Google Scholar 

  • Hashemi-Tari P, Gurka R, Hangan H (2010) Experimental investigation of tornado-like vortex dynamics with swirl ratio: The mean and turbulent flow fields. J Wind Eng Ind Aerodyn 98:936–944

    Article  Google Scholar 

  • Historical Archive of the Adria Municipality (2017) Municipality of Adria, Damage archive of the tornado event. Including the following documents: “Corrispondenza 1946–1953”, “Corrispondenza 1946–1953”, “Atti vari 01/01/1953-31/12/1953”, “Soccorso invernale, colonie, cure termali 01/01/1953–31/12/1954”, “Miscellanea 01/01/1953–31/12/1959”

  • Holzer AM (2001) Tornado climatology of Austria. Atmos Res 56(1–4):203–211

    Article  Google Scholar 

  • ICC500 (2014) Standard for the design and construction of storm shelters. The International Code Council (ICC), in partnership with the National Storm Shelter Association (NSSA)

  • Italian Ministerial Decree (2008) Norme Tecniche per le Costruzioni. Ministerial Drecree 14/01/2008, Ministero delle Infrastrutture e dei Trasporti, Roma

  • Italian Ministerial Decree (2018) Norme Tecniche per le Costruzioni. Ministerial Drecree 19/01/2018, Ministero delle Infrastrutture e dei Trasporti, Roma

  • Kantamaneni K, Alrashed I, Phillips M (2017) Cost vs. safety: a novel design for tornado proof homes. HBRC J 13:223–232

    Article  Google Scholar 

  • Karstens CD, Samaras TM, Lee BD, Gallus WA, Finley CA (2010) Near-ground pressure and wind measurements in tornadoes. Mon Weather Rev. https://doi.org/10.1175/2010MWR3201.1

    Article  Google Scholar 

  • Kato R et al (2015) Analysis of the horizontal two-dimensional near-surface structure of a winter tornadic vortex using high-resolution in situ wind and pressure measurements. J Geophys Res Atmos 120(12):5879–5894

    Article  Google Scholar 

  • Marshall T, Jungbluth A, Baca A (2008a) The Parkersburg, IA tornado: 25 May 2008. Preprints, 24th conference on severe local storms. American Meteorological Society, Savannah, GA; P3.3

  • Marshall T, McCarthy D, LaDue J (2008b) Damage survey of the Greensburg, KS tornado. Preprints, 24th conference on severe local storms. American Meteorological Society, Savannah, GA; 8B.3

  • Marshall T, Davis W, Runnels S (2012a) Damage survey of the Joplin tornado. Preprints, 26th conference on severe local storms. American Meteorological Society, Nashville, TN; 6.1. https://ams.confex.com/ams/26SLS/webprogram/Manuscript/Paper211662/Joplinme rger.pdf. Accessed 15 Jan 2014

  • Marshall T, Stevkovich J, DeBlocks J, Ladue J, Karstens C (2012b). Damage survey of the Tuscaloosa–Birmingham tornado on 27 April 2011. Preprints, 26th conference on severe local storms. American Meteorological Society, Nashville, TN; 5.3. https://ams.confex.com/ams/26SLS/webprogram/Paper211667.html. Accessed 7 Feb 2014

  • Matsui M, Tamura Y (2009) Influence of swirl ratio and incident flow conditions on generation of tornadolike vortex. In: Proceedings of EACWE5

  • McDonald JR (2001) T. Theodore Fujita: his contribution to tornado knowledge through damage documentation and the Fujita Scale. Bull Am Meteorol Soc 82(1):63–72

    Article  Google Scholar 

  • Monji N, Wang Y (1989) A laboratory investigation of the characteristics of tornado-like vortices over various rough surfaces. Acta Meteorol Sin. 3:506–515

    Google Scholar 

  • Montanari G (1694) Le Forze d’Eolo. Dialogo fisico—matematico sopra gli effetti del Vortice, o` fia Turbine, detto negli Stati Veneti. La Bisciabuova. Che il giorno 29 Luglio 1686 ha` scorso e flagellato molte Ville, e Luoghi de’ Territorj di Mantova, Padova, Verona, &c. Parma: A. Poletti

  • Phan LT, Simiu E (1999) The Fujita scale: a reassessment from a structural engineering perspective. In: Proceedings, U.S./Japan Natural Resources Development Program, Joint meeting 31st Technical Memorandum of PWRI 3653, Tsukuba, pp 469–474

  • Prevatt D, Roueche D, Lindt J, Pei S, Dao T, Coulbourne W, Graettinger A, Gupta R, Grau D. 2012. Building damage observations and EF classifications from the Tuscaloosa, AL and Joplin, MO Tornadoes. Structures Congress 2012, Boston, MA, pp 999–1010

  • Protezione Civile Italiana (2018) Official website, extreme events on the Italian peninsula. http://www.protezionecivile.gov.it/

  • Razavi A, Sarkar PP (2018) Tornado-induced wind loads on a low-rise building: influence of swirl ratio, translation speed and building parameters. Eng Struct 167:1–12

    Article  Google Scholar 

  • Roueche D, Prevatt D (2013) Residential damage patterns following the 2011 Tuscaloosa, AL and Joplin, MO tornadoes. J. Disaster Res. 8(6):1061–1067

    Article  Google Scholar 

  • Schaefer J, Galway J (1982) Population biases in the tornado climatology. Preprints, 12th conference on severe local storms. American Meteorological Society, San Antonio, TX, pp 51–54

  • Schultz DM, Richardson YP, Markowski PM, Doswell CA (2014) Tornadoes in the Central United States and the “Clash of Air Masses”. Bull Am Meteorol Soc 95:1704–1712

    Article  Google Scholar 

  • Selvini A, Tibaldi S (1995) A climatological study of thunderstorm activity in the Po Valley. Theor Appl Climatol 50:185–203. https://doi.org/10.1007/BF00866116

    Article  Google Scholar 

  • Silen A (1978) Tornado protection building. Google Patents, 1978

  • Snow JT, Lund DE (1988) A second generation tornado vortex chamber at Purdue University. Preprints, 15th conference on severe local storms. American Meteorological Society, Boston, Mass, pp 323–326

  • Snyder J, Bluestein H (2014) Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Weather Forecast 29:799–827. https://doi.org/10.1175/WAF-D-14-00026.1

    Article  Google Scholar 

  • State Archive of Venice (2017) State Archive of Venice, Venice

  • Tominaga Y, Akabayashi SI, Kitahara T, Arinami Y (2015) Air flow around isolated gable-roof buildings with different roof pitches: wind tunnel experiments and CFD simulations. Build Environ 84:204–213

    Article  Google Scholar 

  • Tormena E (2009) Supercella tornadica in Veneto e Friuli 6 giugno 2009. Report of the extreme tornado events and relative damages to buildings, from Serenissima Meteo Group

  • Ward NB (1972) The exploration of certain features of tornado dynamics using a laboratory model. J Atmos Sci 29:1194–1204

    Article  Google Scholar 

  • Wegener A (1917) Wind - und Wasserhosen in Europa (Tornadoes and Waterspouts in Europe). Verlag Friedrich Vieweg und Sohn, Braunsch- weig

    Google Scholar 

  • Wurman J, Alexander C (2005) The 30 May 1998 Spencer, South Dakota, storm. Part II: comparison of observed damage and radar-derived winds in the tornadoes. Mon Weather Rev 133:97–119

    Article  Google Scholar 

  • Wurman J, Robinson P, Alexander C, Richardson Y (2007) Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull Am Meteorol Soc 88:31–46

    Article  Google Scholar 

  • Wurman J, Alexander C, Robinson P, Richardson Y (2008) Reply. Bull Am Meteorol Soc 89:90–94

    Article  Google Scholar 

  • Zanardo M (2015) Venti a 500 km all’ora: documentario “ciclone del Montello”. Il Gazzettino, edizione del 12/7/2015, Caltagirone Editore, Venezia

  • Zhou H, Dhiradhamvit K, Attard TL (2014) Tornado-borne debris impact performance of an innovative storm safe room system protected by a carbon fiber reinforced hybrid polymeric-matrix composite. Eng Struct 59(2014):308–319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Pipinato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pipinato, A. Recent northeast Italian tornado events: lesson learned for improving structures. Nat Hazards 119, 2197–2233 (2023). https://doi.org/10.1007/s11069-018-3380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-018-3380-2

Keywords

Navigation