Skip to main content
Log in

Modeling of damage-related earthquake losses in a moderate seismic-prone country and cost–benefit evaluation of retrofit investments: application to France

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

We performed large-scale earthquake economic loss estimations for France and cost–benefit analyses for several French cities by developing a semiempirical, intensity-based approach. The proposed methodology is inexpensive and easily applicable in case of a paucity of detailed information regarding the specific regional seismic hazard and the structural characteristics of the building stock, which is of particular importance in moderate-to-low seismic hazard regions. The exposure model is derived from census datasets, and the seismic vulnerability distribution of buildings is calculated using data mining techniques. Several hypothetical, large-scale retrofit scenarios are proposed, with increasing levels of investment. These cities, in their respective reinforced states, are then subjected to a series of hazard scenarios. Seismic hazard data for different return periods are calculated from regulatory accelerations from French seismic zoning. Loss estimations for the original (non-reinforced) configuration show high levels of expected building repair and replacement costs for all time spans. Finally, the benefits in terms of damage avoidance are compared with the costs of each retrofit measure. Relatively limited strengthening investments reduce the probability of building collapse, which is the main cause of human casualties. However, the results of this study suggest that retrofitting is, on average, only cost-effective in the parts of France with the highest seismicity and over the longest time horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AFPS (1996) Le séisme d’Epagny (Haute-Savoie) du 15 juillet 1996. In: AFPS (ed) Rapport de mission, Paris, pp 128–22

  • Atkinson G, Kaka S (2007) Relationships between felt intensity and instrumental ground motion in the central United States and California. Bull Seismol Soc Am 97(2):497–510. doi:10.1785/0120060154

    Article  Google Scholar 

  • Benson C, Twigg J (2004) Measuring mitigation: methodologies for assessing natural hazard risks and the net benefits of mitigation—a scoping study. International Federation of Red Cross and Red Crescent Societies/the ProVention Consortium, p 153

  • Bommer J, Crowley H (2006) The influence of ground-motion variability in earthquake loss modelling. Bull Earthq Eng 4:231–248. doi:10.1007/s10518-006-9008-z

    Article  Google Scholar 

  • Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Haussler D (ed) 5th annual ACM workshop on COLT, ACM Press, Pittsburgh, PA, pp 144–152

  • Brookshire D, Chang S, Cochrane H, Olson R, Rose A, Steenson J (1997) Direct and indirect economic losses from earthquake damage. Earthq Spectra 13(4):683–701

    Article  Google Scholar 

  • Corbane C, Hancilar U, Ehrlich D, De Groevel T (2016) Pan-European seismic risk assessment: a proof of concept using the earthquake loss estimation routine (ELER). Bull Earthq Eng. doi:10.1007/s10518-016-9993-5

    Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  • Di Pasquale G, Goretti A (2001) Vulnerabilità funzionale ed economica degli edifici residenziali colpiti dai recenti eventi sismici italiani—X Congresso Nazionale “L’ingegneria Sismica in Italia”

  • Douglas J, Ulrich T, Negulescu C (2013) Risk-targeted seismic design maps for mainland France. Nat Hazards 65(3):1999–2013. doi:10.1007/s11069-012-0460-6

    Article  Google Scholar 

  • Dunand F, Guéguen P (2012) Comparison between seismic and domestic risk in moderate seismic hazard prone region: the Grenoble City (France) test site. Nat Hazards Earth Syst Sci 12:511–526. doi:10.5194/nhess-12-511-2012

    Article  Google Scholar 

  • EC8 (2005) Eurocode 8—design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard EN 1998–1, Comité Européen de Normalisation, Brussels, Belgium

  • Faenza L, Michelini A (2010) Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap. Geophys J Int 180(3):1138–1152. doi:10.1111/j.1365-246X.2009.04467.x

    Article  Google Scholar 

  • FEMA (1994a) Typical costs for seismic rehabilitation of existing buildings (FEMA 156). 2nd edn. Earthquake hazards reduction series 39

  • FEMA (1994b) Typical costs for seismic rehabilitation of existing building. 2nd edn. Vol 2-supporting documentation. (FEMA 157)

  • FEMA (2003) HAZUS-MH technical manual, federal emergency management agency (FEMA 443). National Institute of Building Sciences, Washington

    Google Scholar 

  • GEOTER-HAUSS (2011) Réalisation d’une etude de presumption de vulnérabilité sismique et de pertinence de renforcement sur les bâtiments de classe C et D et l’ensemble des établissements scolaires de la commune de Lourdes (65). Rapport GTR/DDT65/0511-855

  • Grünthal G, Levret A (2001) L’échelle macrosismique européenne. Conseil de l’Europe—Cahiers du Centre Européen de Géodynamique et de Séismologie. p 19

  • Guettiche A, Guéguen P, Mimoune M (2017) Seismic vulnerability assessment using association rule learning—application to the city of Constantine, Algeria. Nat Hazards 86(3):1223–1245. doi:10.1007/s11069-016-2739-5

    Article  Google Scholar 

  • Jackson J (2006) Fatal attraction: living with earthquakes. The growth of villages into megacities and earthquake vulnerability in the modern world. Philos Trans R Soc 364(1845):1911–1925

    Article  Google Scholar 

  • Kappos AJ, Panagopoulos G, Panagiotopoulos C, Penelis G (2006) A hybrid method for the vulnerability assessment of R/C and URM buildings. Bull Earthq Eng 4(4):391–413

    Article  Google Scholar 

  • Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4:415–443. doi:10.1007/s10518-006-9024-z

    Article  Google Scholar 

  • Marin S, Avouac JP, Nicolas M, Schlupp A (2004) A probabilistic approach to seismic hazard in metropolitan France. Bull Seismol Soc Am 94(6):2137–2163

    Article  Google Scholar 

  • Martin C, Combes P, Lignon G, Fioravanti A, Carbon D, Monge O, Grellet B (2002) Révision du zonage sismique de la France: Etude probabiliste. Technical report. Rapport de Phase 3, GEO-TER, France, report GTR/MATE/0701-150, Affaire no. 1601, in French

  • Martin C, Secanell R, Viallet E, Humbert N (2008) Consistency of PSHA models in acceleration and intensity by confrontation of predictive models to available observations in France. In: CSNI workshop on “recent findings and developments in PSHA methodologies and applications”, Lyon-France, 7–9 April 2008

  • MEDD (1982) Le risque sismique, Délégation aux risques majeurs (in French)

  • Riedel I (2015) Analyse de la vulnérabilité du bâti existant. Estimation et réduction des incertitudes dans l’estimation des dommages et des pertes pour un scénario sismique donné. Ph.D. Grenoble (France), Université Grenoble Alpes. https://tel.archives-ouvertes.fr/browse/last

  • Riedel I, Guéguen P, Dunand F, Cottaz S (2014) Macro-scale vulnerability assessment of cities using association rule learning. Seismol Res Lett 85(2):295–305. doi:10.1785/0220130148

    Article  Google Scholar 

  • Riedel I, Guéguen P, Dalla Mura M, Pathier E, Leduc T, Chanussot J (2015) Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods. Nat Hazards 76(2):1111–1141. doi:10.1007/s11069-014-1538-0

    Article  Google Scholar 

  • SIA (2004) Vérification de la sécurité parasismique des bâtiments existants (SIA 2018). Societé Suisse des ingénieurs et des architectes, Zurich

    Google Scholar 

  • Smyth A, Altau G, Deodatis G, Erdik M, Franco G, Gülkan P, Kunreuther H, Lus H, Mete E, Seeber N, Yüzügüllü Ö (2004) Probabilistic benefit-cost analysis for earthquake damage mitigation: evaluating measures for apartment houses in Turkey. Earthq Spectra 20(1):171–203

    Article  Google Scholar 

  • So E, Spence R (2012) Estimating shaking-induced casualties and building damage for global earthquake events: a proposed modelling approach. Bull Earthq Eng 11:347–363. doi:10.1007/s10518-012-9373-8

    Article  Google Scholar 

  • Spence R, Lebrun B (2006) Earthquake scenarios for European cities: the risk-UE project. Bull Earthq Eng 4 (special issue)

  • Spence R, Bommer J, del Re D, Bird J, Aydinoglu N, Tabuchi S (2003) Comparing loss estimation with observed damage: a case study of the 1999 Kocaeli earthquake in Turkey. Bull Earthq Eng 1:83–113

    Article  Google Scholar 

  • Tyagunov S, Pittore M, Wieland M, Parolai S, Bindi D, Fleming K, Zschau J (2014) Uncertainty and sensitivity analyses in seismic risk assessments on the example of Cologne, Germany. Nat Hazards Earth Syst Sci 14:1625–1640. doi:10.5194/nhess-14-1625-2014

    Article  Google Scholar 

  • USGS (2015) U.S. geological service website. Available from: http://earthquake.usgs.gov/earthquakes/eqarchives/. Last Accessed Apr 2015

  • Valcarcel J, Mora M, Cardona O, Pujades L, Barbat A, Bernal G (2013) Methodology and applications for the benefit cost analysis of the seismic risk reduction in building portfolios at broadscale. Nat Hazards 69:845–868. doi:10.1007/s11069-013-0739-2

    Article  Google Scholar 

  • Whitehead J, Rose A (2009) Estimating environmental benefits of natural hazard mitigation with data transfer: results from a benefit-cost analysis of Federal Emergency Management Agency hazard mitigation grants. Mitig Adapt Strateg Glob Change 14:655–676. doi:10.1007/s11027-009-9189-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MAIF Foundation. INSEE data were prepared and provided by the Centre Maurice Halbwachs (CMH). This study was sponsored by the Urban Seismology project at the Institute of Earth Science ISTerre of the University of Grenoble-Alpes and by a grant from Labex OSUG@2020 (Investissements d’avenir, ANR10-LABX56).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Guéguen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riedel, I., Guéguen, P. Modeling of damage-related earthquake losses in a moderate seismic-prone country and cost–benefit evaluation of retrofit investments: application to France. Nat Hazards 90, 639–662 (2018). https://doi.org/10.1007/s11069-017-3061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-3061-6

Keywords

Navigation