Skip to main content

Advertisement

Log in

Automatic detection of wet-snow avalanche seismic signals

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Avalanche activity is an important factor when estimating the regional avalanche danger. Moreover, a complete and detailed picture of avalanche activity is needed to understand the processes that lead to natural avalanche release. Currently, information on avalanche activity is mainly obtained through visual observations. However, this involves large uncertainties in the number and release times, influencing the subsequent analysis. Therefore, alternative methods for the remote detection of snow avalanches in particular in non-observed areas are highly desirable. In this study, we use the excited ground vibration to identify avalanches automatically. The specific seismic signature of avalanches facilitates the objective detection by a recently developed classification procedure. A probabilistic description of the signals, called hidden Markov models, allows the robust identification of corresponding signals in the continuous data stream. The procedure is based upon learning a general background model from continuous seismic data. Then, a single reference waveform is used to update an event-specific classifier. Thus, a minimum amount of training data is required by constructing such a classifier on the fly. In this study, we processed five days of continuous data recorded in the Swiss Alps during the avalanche winter 1999. With the restriction of testing large wet-snow avalanches only, the presented approach achieved very convincing results. We successfully detect avalanches over a large volume and distance range. Ninety-two percentage of all detections (43 out of 47) could be confirmed as avalanche events; only four false alarms are reported. We see a clear dependence of recognition capability on run-out distance and source–receiver distance of the observed events: Avalanches are detectable up to a source-receiver distance of eight times the avalanche length. Implications for analyzing a more comprehensive data set (smaller events and different flow regimes) are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ancey C, Meunier M, Richard D (2003) Inverse problem in avalanche dynamics models. Water Resour Res 39(4):1099. doi:10.1029/2002WR001749

    Article  Google Scholar 

  • Arattano M (1999) On the use of seismic detectors as monitoring and warning systems for debris flows. Nat Hazards 20(2–3):197–213. doi:10.1023/A:1008061916445

    Article  Google Scholar 

  • Arattano M, Marchi L (2008) Systems and sensors for debris-flow monitoring and warning. Sensors 8(4):2436–2452. doi:10.3390/s8042436

    Article  Google Scholar 

  • Bessason B, Eiriksson G, Thorarinsson O, Thorarinsson A, Einarsson S (2007) Automatic detection of avalanches and debris flows by seismic methods. J Glaciol 53(182):461–472. doi:10.3189/002214307783258468

    Article  Google Scholar 

  • Biescas B, Dufour F, Furdada G, Khazaradze G, Suriñach E (2003) Frequency content evolution of snow avalanche seismic signals. Surv Geophys 24(5–6):447–464. doi:10.1023/B:GEOP.0000006076.38174.31

    Article  Google Scholar 

  • Dammeier F, Moore JR, Hammer C, Haslinger F, Loew S (2016) Automatic detection of alpine rockslides in continuous seismic data using hidden Markov models. J Geophys Res Earth Surf 121(2):351–371. doi:10.1002/2015JF003647

    Article  Google Scholar 

  • Deparis J, Jongmans D, Cotton F, Baillet L, Thouvenot F, Hantz D (2008) Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps. Bull Seismol Soc Am 98(4):1781–1796. doi:10.1785/0120070082

    Article  Google Scholar 

  • Eckerstorfer M, Bühler Y, Frauenfelder R, Malnes E (2016) Remote sensing of snow avalanches: recent advances, potential, and limitations. Cold Reg Sci Technol 121:126–140. doi:10.1016/j.coldregions.2015.11.001

    Article  Google Scholar 

  • Graveline MH, Germain D (2016) Ice-block fall and snow avalanche hazards in northern Gaspesie (eastern Canada): triggering weather scenarios and process interactions. Cold Reg Sci Technol 123:81–90. doi:10.1016/j.coldregions.2015.11.012

    Article  Google Scholar 

  • Greene E, Atkins D, Birkeland K, Elder K, LAndry C, Lazar B, McCammon I, Moore M, Sharaf D, Sterbenz C, Tremper B, Williams K (2010) Snow, weather and avalanches: observational guidelines for avalanche programs in the United States. American Avalanche Association (AAA) Pagosa Springs.

  • Hammer C, Beyreuther M, Ohrnberger M (2012) A seismic-event spotting system for volcano fast-response systems. Bull Seismol Soc Am 102(3):948–960. doi:10.1785/0120110167

    Article  Google Scholar 

  • Hammer C, Ohrnberger M, Faeh D (2013) Classifying seismic waveforms from scratch: a case study in the alpine environment. Geophys J Int 192(1):425–439. doi:10.1093/gji/ggs036

    Article  Google Scholar 

  • Hammer C, Ohrnberger M, Schlindwein V (2015) Pattern of cryospheric seismic events observed at Ekström Ice Shelf, Antarctica. Geophys Res Lett 42(10):3936–3943. doi:10.1002/2015GL064029

    Article  Google Scholar 

  • Horasan G, Guney AB, Kusmezer A, Bekler F, Ogutcu Z, Musaoglu N (2009) Contamination of seismicity catalogs by quarry blasts: an example from Istanbul and its vicinity, northwestern Turkey. J Asian Earth Sci 34(1):90–99. doi:10.1016/j.jseaes.2008.03.012

    Article  Google Scholar 

  • Jolly AD, Thompson G, Norton GE (2002) Locating pyroclastic flows on Soufriere Hills Volcano, Montserrat, West Indies, using amplitude signals from high dynamic range instruments. J Vol Geotherm Res 118(3):299–317. doi:10.1016/S0377-0273(02)00299-8

  • Knapmeyer-Endrun B, Hammer C (2015) Identification of new events in Apollo 16 lunar seismic data by Hidden Markov Model-based event detection and classification. J Geophys Res Planets 120(10):1620–1645. doi:10.1002/2015JE004862

    Article  Google Scholar 

  • Kogelnig A, Hübl J, Suriñach E, Vilajosana I, McArdell B (2011a) Infrasound produced by debris flow: propagation and frequency content evolution. Nat Hazards 70(3):1713–1733. doi:10.1007/s11069-011-9741-8

    Article  Google Scholar 

  • Kogelnig A, Suriñach E, Vilajosana I, Hübl J, Sovilla B, Hiller M, Dufour F (2011) On the complementariness of infrasound and seismic sensors for monitoring snow avalanches. Nat Hazards Earth Syst Sci 11(8):2355–2370. doi:10.5194/nhess-11-2355-2011

    Article  Google Scholar 

  • Lacroix P, Grasso JR, Roulle J, Giraud G, Goetz D, Morin S, Helmstetter A (2012) Monitoring of snow avalanches using a seismic array: Location, speed estimation, and relationships to meteorological variables. J Geophys Res Earth Surf 117, F01034. doi:10.1029/2011JF002106

    Article  Google Scholar 

  • Laternser M, Schneebeli M (2002) Temporal trend and spatial distribution of avalanche activity during the last 50 years in Switzerland. Nat Hazards 27(3):201–230. doi:10.1023/A:1020327312719

    Article  Google Scholar 

  • Lato MJ, Frauenfelder R, Bühler Y (2012) Automated detection of snow avalanche deposits: segmentation and classification of optical remote sensing imagery. Nat Hazards Earth Syst Sci 12(9):2893–2906. doi:10.5194/nhess-12-2893-2012

    Article  Google Scholar 

  • Leprettre B, Navarre J, Taillefer A (1996) First results from a pre-operational system for automatic detection and recognition of seismic signals associated with avalanches. J Glaciol 42(141):352–363. doi:10.3198/1996JoG42-141-352-363

    Article  Google Scholar 

  • Leprettre B, Martin N, Glangeaud F, Navarre JP (1998) Three-component signal recognition using time, time-frequency, and polarization information-application to seismic detection of avalanches. IEEE Trans Signal Process 461:83–102. doi:10.1109/78.651183

    Article  Google Scholar 

  • Marchi L, Arattano M, Deganutti A (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46(1–2):1–17. doi:10.1016/S0169-555X(01)00162-3

    Article  Google Scholar 

  • Marienthal A, Hendrikx J, Birkeland K, Irvine KM (2015) Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers. Cold Reg Sci Technol 120(SI):227–236. doi:10.1016/j.coldregions.2015.08.007

    Article  Google Scholar 

  • McClung DM, Schaerer P (2006) The avalanche handbook. The Mountaineers Books, Seattle

    Google Scholar 

  • Navarre JP, Bourova E, Roulle J, Deliot Y (2009) The seismic detection of avalanches: an information tool for the avalanche forecaster. In: International snow science workshop. International Snow Science Workshop, Davos, Switzerland, SEP 27–OCT 02, pp 379–383

  • Pérez-Guillén C, Tapia M, Furdada G, Suriñach E, McElwaine JN, Steinkogler W, Hiller M (2014) Evaluation of a snow avalanche possibly triggered by a local earthquake at Vallee de la Sionne, Switzerland. Cold Reg Sci Technol 108:149–162. doi: 10.1016/j.coldregions.2014.07.007

    Article  Google Scholar 

  • Pérez-Guillén C, Sovilla B, Suriñach E, Tapia M, Köhler A (2016). Deducing avalanche size and flow regimes from seismic measurements. Cold Reg Sci Technol 121:25–41. doi:10.1016/j.coldregions.2015.10.004

    Article  Google Scholar 

  • Prokop A, Wirbel A, Jungmayr M (2013) The avalanche detector–a new avalanche monitoring tool using distributed acoustic fibre optic sensing. In: International snow science workshop, International Snow Science Workshop, Grenoble Chamonix Mont-Blanc, France, pp. 458–462

  • Rabiner L (1989) A tutorial on hidden markov-models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  • Reiweger I, Schweizer J (2013) Measuring acoustic emissions in an avalanche starting zone to monitor snow stability. In: International snow science workshop, International Snow Science Workshop, Grenoble Chamonix Mont-Blanc, France, pp. 942–944

  • Reiweger I, Mayer K, Steiner K, Dual J, Schweizer J (2015) Measuring and localizing acoustic emission events in snow prior to fracture. Cold Reg Sci Technol 110:160–169. doi:10.1016/j.coldregions.2014.12,002

    Article  Google Scholar 

  • Rubin MJ, Camp T, Herwijnen AV, Schweizer J (2012) Automatically detecting avalanche events in passive seismic data. In: Proceedings of the 2012 11th international conference on machine learning and applications, vol. 1. ICMLA ’12, pp 13–20. doi:10.1109/ICMLA.2012.12

  • Sabot F, Naaim M, Granada F, Suriñach E, Planet P, Furdada G (1998) Study of avalanche dynamics by seismic methods, image-processing techniques and numerical models. Ann Glaciol 26:319–323. doi:10.3198/1998AoG26-1-319-323

    Article  Google Scholar 

  • Schweizer J, van Herwijnen A (2013) Can near real-time avalanche occurrence data improve avalanche forecasting? In: International snow science workshop. International Snow Science Workshop, Grenoble Chamonix Mont-Blanc, France, 2013, pp. 195–198

  • Schweizer J, Jamieson B, Schneebeli M (2003) Snow avalanche formation. Rev Geophys 41(4):1944–9208. doi:10.1029/2002RG000123

    Article  Google Scholar 

  • Schweizer J, Mitterer C, Stoffel L (2008) Determining the critical new snow depth for a destructive avalanche by considering the return period. In: International snow science workshop, International Snow Science Workshop, Whistler, Canada, SEP 21-26, pp. 292–298

  • Schweizer J, Mitterer C, Stoffel L (2009) On forecasting large and infrequent snow avalanches. Cold Reg Sci Technol 59(2–3, SI):234–241. doi:10.1016/j.coldregions.2009.01.006

    Article  Google Scholar 

  • Scott ED, Hayward CT, Colgan TJ, Hamann JC, Fubichek RF, Pierre JW, Yount J (2006) Practical implementation of avalanche infrasound monitoring technology for operational utilization near teton pass wyoming. In: International snow science workshop

  • Steinkogler W, Sovilla B, Lehning M (2014) Influence of snow cover properties on avalanche dynamics. Cold Reg Sci Technol 97:121–131. doi:10.1016/j.coldregions.2013.10.002

    Article  Google Scholar 

  • Stoffel A, Meister R, Schweizer J (1998) Spatial characteristics of avalanche activity in an alpine valley-a gis approach. Ann Glaciol 26:329–336. doi:10.3198/1998AoG26-1-329-336

    Article  Google Scholar 

  • Suriñach E, Furdada G, Sabot F, Biescas B, Vilaplana J (2001) On the characterization of seismic signals generated by snow avalanches for monitoring purposes. Ann Glaciol 32:268–274. doi:10.3189/172756401781819634

    Article  Google Scholar 

  • Suriñach E, Sabot F, Furdada G, Vilaplana J (2000) Study of seismic signals of artificially released snow avalanches for monitoring purposes. Phys Chem Earth Part B Hydrol Oceans Atmos 25(9):721–727. doi:10.1016/S1464-1909(00)00092-7

    Article  Google Scholar 

  • Suriñach E, Vilajosana I, Khazaradze G, Biescas B, Furdada G, Vilaplana JM (2005) Seismic detection and characterization of landslides and other mass movements. Nat Hazards Earth Syst Sci 5(6):791–798. doi:10.5194/nhess-5-791-2005

    Article  Google Scholar 

  • Thüring T, Schoch M, van Herwijnen A, Schweizer J (2015) Robust snow avalanche detection using supervised machine learning with infrasonic sensor arrays. Cold Reg Sci Technol 111:60–66. doi:10.1016/j.coldregions.2014.12.014

    Article  Google Scholar 

  • Ulivieri G, Marchetti E, Ripepe M, Chiambretti I, Da Rosa G, Segor V (2011) Monitoring snow avalanches in Northwestern Italian Alps using an infrasound array. Cold Reg Sci Technol 69(2–3, SI):177–183. doi:10.1016/j.coldregions.2011.09.006

    Article  Google Scholar 

  • Valt M, Pesaresi D (2009) Detecting snow avalanches with seismic stations in North-east Italy: first results of dataset analysis. In: International snow and science workshop, International Snow Science Workshop, Davos, Switzerland, SEP 27-OCT 02, pp. 458–462

  • Van Herwijnen A, Schweizer J (2011) Monitoring avalanche activity using a seismic sensor. Cold Reg Sci Technol 69(2–3, SI):165–176. doi:10.1016/j.coldregions.2011.06.008

    Article  Google Scholar 

  • Van Herwijnen A, Schweizer J (2011b) Seismic sensor array for monitoring an avalanche start zone: design, deployment and preliminary results. J Glaciol 57(202):267–276. doi:10.3189/002214311796405933

    Article  Google Scholar 

  • Van Herwijnen A, Heck M, Schweizer J (2014) Detecting avalanches using seismic monitoring systems. In: International snow science workshop. International Snow Science Workshop, Banff, pp 116–121

  • Vilajosana I, Suriñach E, Abellan A, Khazaradze G, Garcia D, Llosa J (2008) Rockfall induced seismic signals: case study in Montserrat, Catalonia. Nat Hazards Earth Syst Sci 8(4):805–812. doi:10.5194/nhess-8-805-2008

    Article  Google Scholar 

  • Wilhelm C, Wiesinger T, Brundl M, Ammann W (2000) The avalanche winter 1999 in Switzerland – an Overview. In: International snow science workshop, pp. 487–494

Download references

Acknowledgements

This work was partly funded by the project Swiss Experiment, funded by the Competence Center for Environment and Sustainability of the ETH Domain (CCES). We thank Jürg Schweizer from SLF for providing detailed information on avalanches used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conny Hammer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammer, C., Fäh, D. & Ohrnberger, M. Automatic detection of wet-snow avalanche seismic signals. Nat Hazards 86, 601–618 (2017). https://doi.org/10.1007/s11069-016-2707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2707-0

Keywords

Navigation