Skip to main content

Advertisement

Log in

Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The use of rainfall–runoff models constitutes an alternative to statistical approaches (such as at-site or regional flood frequency analysis) for design flood estimation and represents an answer to the increasing need for synthetic design hydrographs associated with a specific return period. Nevertheless, the lack of streamflow observations and the consequent high uncertainty associated with parameters estimation usually pose serious limitations to the use of process-based approaches in ungauged catchments, which in contrast represent the majority in practical applications. This work presents a Bayesian procedure that, for a predefined rainfall–runoff model, allows for the assessment of posterior parameters distribution, using limited and uncertain information available about the response of ungauged catchments, i.e. the regionalized first three L-moments of annual streamflow maxima. The methodology is tested for a catchment located in southern Italy and used within a Monte Carlo scheme to obtain design flood values and simulation uncertainty bands through both event-based and continuous simulation approaches. The obtained results highlight the relevant reduction in uncertainty bands associated with simulated peak discharges compared to those obtained considering a prior uniform distribution for model parameters. A direct impact of uncertainty in regional estimates of hydrological signatures on posterior parameters distribution is also evident. For the selected case study, continuous simulation, generally, better matches the estimates of the statistical flood frequency analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alfieri L, Laio F, Claps P (2008) A simulation experiment for optimal design hyetograph selection. Hydrol Process 22:813–820

    Article  Google Scholar 

  • Almeida S, Bulygina N, McIntyre N, Wagener T, Buytaert W (2012) Predicting flows in ungauged catchments using correlated information sources. BHS National Symposium Proceedings, Dundee

    Book  Google Scholar 

  • Aronica GT, Candela A (2007) Derivation of flood frequency curves in poorly gauged Mediterranean catchments using a simple stochastic hydrological rainfall-runoff model. J Hydrol 347(1–2):132–142

    Article  Google Scholar 

  • Biondi D, Claps P, Cruscomagno F, De Luca DL, Fiorentino M, Ganora D, Gioia A, Iacobellis V, Laio F, Manfreda S, Versace P (2012) Dopo il VAPI: la valutazione delle massime portate al colmo di piena nell’esperienza del POR Calabria (in Italian). In: Proceedings of XXXIII Italian national conference on hydraulics and hydraulic engineering, Brescia, Italy, 10–15 September 2012

  • Blazkova S, Beven KJ (2002) Flood frequency estimation by continuous simulation for a catchment treated as ungauged (with uncertainty). Water Resour Res. doi:10.1029/2001WR000500

    Google Scholar 

  • Blazkova S, Beven K (2009) A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic. Water Resour Res 45: W00B16

  • Blöschl G, Sivalapan M, Wagener T, Viglione A, Savenije H (2013) Runoff prediction in ungauged basins. Synthesis across processes, places and scales. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Boughton W, Droop O (2003) Continuous simulation for design flood estimation—a review. Environ Modell Softw 18(49):309–318

    Article  Google Scholar 

  • Box G, Tiao G (1973) Bayesian inference in statistical analysis. Addison-Wesley, Reading

    Google Scholar 

  • Bulygina N, McIntyre N, Wheater HS (2009) Conditioning rainfall-runoff model parameters for ungauged catchments and land management impacts analysis. Hydrol Earth Syst Sci 13:893–904. doi:10.5194/hess-13-893-2009

    Article  Google Scholar 

  • Bulygina N, McIntyre N, Wheater H (2011) Bayesian conditioning of a rainfall-runoff model for predicting flows in ungauged catchments and under land use changes. Water Resour Res 47:W02503. doi:10.1029/2010WR009240

    Google Scholar 

  • Bulygina N, Ballard C, McIntyre N, O’Donnell G, Wheater H (2012) Integrating different types of information into hydrological model parameter estimation: application to ungauged catchments and land use scenario analysis. Water Resour Res. doi:10.1029/2011WR011207

    Google Scholar 

  • Cameron D, Beven K, Tawn J, Blazkova S, Naden P (1999) Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty). J Hydrol 219:169–187. doi:10.1016/S0022-1694(99)00057-8

    Article  Google Scholar 

  • Cameron D, Beven K, Naden P (2000) Flood frequency estimation under climate change (with uncertainty). Hydrol Earth Syst Sci 4(3):393–405

    Article  Google Scholar 

  • Castiglioni S, Lombardi L, Toth E, Castellarin A, Montanari A (2010) Calibration of rainfall-runoff models in ungauged basins: a regional maximum likelihood approach. Adv Water Resour 33(10):1235–1242

    Article  Google Scholar 

  • Claps P, Laio F (2008). Aggiornamento delle procedure delle procedure di valutazione delle piene in Piemonte, con particolare riferimento ai bacini sottesi da invasi artificiali. VOLUME I: Costruzione e applicazione delle procedure di stima delle portate al colmo di piena (in Italian). Technical report of Department of Hydraulics, Transport and Civil Infrastructures, Polytechnic of Turin, 306 pp

  • Claps P, Fiorentino M, Sole A, Iacobellis V, Laio F, Manfreda S, Margiotta MR (2010). Attività A Livello 2:Modelli statistici regionali (in italian). Technical report of the Project POR-Calabria 2000–2006 “Studio e sperimentazione di metodologie e tecniche per la mitigazione del rischio idrogeologico”. July 2010

  • De Luca DL (2014) Analysis and modelling of rainfall fields at different resolutions in southern Italy. Hydrol Sci J 59(8):1536–1558. doi:10.1080/02626667.2014.926013

    Article  Google Scholar 

  • De Michele C, Salvadori G (2002) On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition. J Hydrol 262:245–258

    Article  Google Scholar 

  • de Paola F, Ranucci A, Feo A (2013) Antecedent moisture condition (SCS) frequency assessment: a case study in southern Italy. Irrig Drain 62:61–71. doi:10.1002/ird.1801

    Article  Google Scholar 

  • Eagleson PS (1972) Dynamics of flood frequency. Water Resour Res 8(4):878–898

    Article  Google Scholar 

  • Efstratiadis A, Koussis AD, Koutsoyiannis D, Mamassis N (2014) Flood design recipes vs. reality: Can predictions for ungauged basins be trusted? Nat Hazard Earth Sys 14(6):1417–1428. doi:10.5194/nhess-14-1417-2014

    Article  Google Scholar 

  • Griffis VW, Stedinger JR (2007) The use of GLS regression in regional hydrologic analyses. J Hydrol 344:82–95

    Article  Google Scholar 

  • Grimaldi S, Petroselli A, Serinaldi F (2012a) A continuous simulation model for design-hydrograph estimation in small and ungauged watersheds. Hydrolog Sci J 57(6):1035–1051. doi:10.1080/02626667.2012.702214

    Article  Google Scholar 

  • Grimaldi S, Petroselli A, Serinaldi F (2012b) Design hydrograph estimation in small and ungauged watersheds: continuous simulation method versus event-based approach. Hydrol Process 26:3124–3134. doi:10.1002/hyp.8384

    Article  Google Scholar 

  • Grimaldi S, Petroselli A, Romano N (2013) Green-Ampt curve-number mixed procedure as an empirical tool for rainfall-runoff modelling in small and ungauged basins. Hydrol Process 27(8):1253–1264. doi:10.1002/hyp.9303

    Article  Google Scholar 

  • Gupta HV, Wagener T, Liu Y (2008) Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrol Process 22:3802–3813. doi:10.1002/hyp.6989

    Article  Google Scholar 

  • Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Arheimer B, Blume T, Clark MP, Ehret U, Fenicia F, Freer JE, Gelfan A, Gupta HV, Hughes DA, Hut RW, Montanari A, Pande S, Tetzlaff D, Troch PA, Uhlenbrook S, Wagener T, Winsemius HC, Woods RA, Zehe E, Cudennec C (2013) A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrolog Sci J 58(6):1198–1255. doi:10.1080/02626667.2013.803183

    Article  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall, New York

    Book  Google Scholar 

  • Kjeldsen TR (2007) The revitalised FSR/FEH rainfall-runoff method—a user handbook, Flood Estimation Handbook Supplementary Report No. 1, Centre for Ecology and Hydrology, Wallingford. www. ceh.ac.uk/refh

  • Laio F, Ganora D, Claps P, Galeati G (2011) Spatially smooth regional estimation of the flood frequency curve (with uncertainty). J Hydrol 408:67–77

    Article  Google Scholar 

  • Lamb R (1999) Calibration of a conceptual rainfall-runoff model for flood frequency estimation by continuous simulation. Water Resour Res 35(10):3103–3114. doi:10.1029/1999WR900119

    Article  Google Scholar 

  • Lamb R (2006) Rainfall-runoff modeling for flood frequency estimation. Encycl Hydrol Sci 11:125

    Google Scholar 

  • Lombardi L, Toth E, Castellarin A, Montanari A, Brath A (2012) Calibration of a rainfall–runoff model at regional scale by optimising river discharge statistics: Performance analysis for the average/low flow regime. Phys Chem Earth 42–44:77–84

    Article  Google Scholar 

  • Loukas A (2002) Flood frequency estimation by a derived distribution procedure. J Hydrol 255(1–4):69–89

    Article  Google Scholar 

  • Menabde M, Sivapalan M (2000) Modeling of rainfall time series and extremes using bounded random cascades and levystable distributions. Water Resour Res 36(11):3293–3300. doi:10.1029/2000WR900197

    Article  Google Scholar 

  • Merz R, Bloschl G (2004) Regionalisation of catchment model parameters. J Hydrol 287(95–123):2004. doi:10.1016/j.jhydrol.2003.09.028

    Google Scholar 

  • Michel C, Andréassian V, Perrin C (2005) Soil conservation service curve number method: How to mend a wrong soil moisture accounting procedure? Water Resour Res. doi:10.1029/2004WR003191

    Google Scholar 

  • Molnar P, Burlando P (2005) Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model. Atmos Res 77:137–151. doi:10.1016/j.atmosres.2004.10.024

    Article  Google Scholar 

  • Montanari A, Toth E (2007) Calibration of hydrological models in the spectral domain: an opportunity for ungauged basins? Water Resour Res 43:W05434. doi:10.1029/2006WR005184

    Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2001) Introduction to linear regression analysis, 3rd edn. Wiley, New York. ISBN: 10:0471315656

  • Moretti G, Montanari A (2008) Inferring the flood frequency distribution for an ungauged basin using a spatially distributed rainfall-runoff model. Hydrol Earth Syst Sci 12:1141–1152. doi:10.5194/hess-12-1141-2008

    Article  Google Scholar 

  • Nash JE (1957) The form of instantaneous unit hydrograph. Int Assn Sci Hydro Publ No. 51: 546-557, IAHS, Gentbrugge

  • Nelsen RB (2006) An introduction to Copulas, 2nd edn. Springer, New York

    Google Scholar 

  • Pathiraja S, Westra S, Sharma A (2012) Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resour Res 48:W06534. doi:10.1029/2011WR010997

    Google Scholar 

  • Reis DS Jr, Stedinger JR, Martins ES (2005) Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resour Res 41:W10419. doi:10.1029/2004WR003445

    Google Scholar 

  • Rogger M, Kohl B, Pirkl H, Viglione A, Komma J, Kirnbauer R, Merz R, Blöschl G (2012) Runoff models and flood frequency statistics for design flood estimation in Austria—Do they tell a consistent story? J Hydrol 456–457:30–43

    Article  Google Scholar 

  • Rossi F, Fiorentino M, Versace P (1984) Two-component extreme value distribution for flood frequency analysis. Water Resour Res 20(7):847–856

    Article  Google Scholar 

  • Saghafian B, Ghasemi AR, Golian S (2014) Flood frequency analysis based on simulated peak discharges. Nat Hazards 71:403–417

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremis in nature An approach using Copulas Water science and technology library, vol 56. Springer, Berlin

    Google Scholar 

  • Seibert J (1999) Regionalisation of parameters for a conceptual rainfall runoff model. Agric For Meteorol 98–99:279–293

    Article  Google Scholar 

  • Serinaldi F (2009) A multisite daily rainfall generator driven by bivariate copula-based mixed distributions. J Geophys Res 114:D10103. doi:10.1029/2008JD011258

    Article  Google Scholar 

  • Sharma A, Mehrotra R (2010) Rainfall generation. American Geophysical Union, pp 215–246. doi:10.1029/2010GM000973

  • Sirangelo B, Versace P, De Luca DL (2007) Rainfall nowcasting by at site stochastic model P.R.A.I.S.E. Hydrol Earth. Syst Sci 11(4):1341–1351

    Article  Google Scholar 

  • Sivapalan M (2003) Prediction in ungauged basins: a grand challenge for theoretical hydrology. Hydrol Process 17:3163–3170. doi:10.1002/hyp.5155

    Article  Google Scholar 

  • Stedinger J, Tasker G (1985) Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared. Water Resour Res 21(9):1421–1432. doi:10.1029/WR021i009p01421

    Article  Google Scholar 

  • USDA, SCS (1964) National engineering handbook, Sec. 4 Hydrology. USDA, Washington, DC

  • Verhoest NEC, Vandenberghe S, Cabus P, Onof C, Meca-Figueras T, Jameleddine S (2010) Are stochastic point rainfall models able to preserve extreme flood statistics? Hydrol Process 24:3439–3445

    Article  Google Scholar 

  • Viglione A, Bloschl G (2009) On the role of storm duration in the mapping of rainfall to flood return periods. Hydrol Earth Syst Sci 13:205–216

    Article  Google Scholar 

  • Viviroli D, Mittelbach H, Gurtz J, Weingartner R (2009) Continuous simulation for flood estimation in ungauged catchments of Switzerland—Part II: parameter regionalisation and flood estimation results. J Hydrol 377:208–225

    Article  Google Scholar 

  • Wagener T, Montanari A (2011) Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resour Res 47:W06301. doi:10.1029/2010WR009469

    Google Scholar 

  • Wheater H, Chandler R, Onof C, Isham V, Bellone E, Yang C, Lekkas D, Lourmas G, Segond ML (2005) Spatial-temporal rainfall modelling for flood risk estimation. Stoch Environ Res Risk Assess 19(6):403–416

    Article  Google Scholar 

  • Winsemius HC, Schaefli B, Montanari A, Savenije HHG (2009) On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resour Res 45:W12422. doi:10.1029/2009WR007706

    Google Scholar 

  • Yadav M, Wagener T, Gupta HV (2007) Regionalization of constraints on expected watershed response behavior. Adv Water Resour 30:1756–1774. doi:10.1016/j.advwatres.2007.01.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Luciano De Luca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biondi, D., De Luca, D.L. Process-based design flood estimation in ungauged basins by conditioning model parameters on regional hydrological signatures. Nat Hazards 79, 1015–1038 (2015). https://doi.org/10.1007/s11069-015-1889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-015-1889-1

Keywords

Navigation