Skip to main content
Log in

An Improved Stirling Approximation for Trip Distribution Models

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

Many trip distribution models used in transport systems planning are designed to solve maximum entropy optimization problems. Discrete by nature, they must be transformed into continuous and differentiable problems, typically by applying the first-order Stirling approximation. Although it does a reasonable job for large trip flows, this approximation produces significant errors when flows are small. This paper presents two alternatives using the second-order Stirling approximation and Burnside’s formula to specify new distribution models that improve prediction for small trip values. In an application to real data for the Santiago, Chile metro system, both proposed formulations obtained results with superior goodness-of-fit and predictive capacity to a traditional model using a first-order Stirling approximation. The version incorporating the second-order Stirling approximation delivered the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamsson T, Lundqvist L (1999) Formulation and estimation of combined network equilibrium models with applications to Stockholm. Transp Sci 33:80–100

    Article  Google Scholar 

  • Alonso W (1973) National Interregional Demographic Accounts: A Prototype. Monograph 17, Institute of Urban and Regional Development. University of California, Berkeley

    Google Scholar 

  • Alonso W (1986). Systemic and Log-Linear Models: From Here to There, Then to Now, and This to That. Discussion paper 86–10, Centre for population studies, Harvard University.

  • Anas A (1981) The estimation of multinomial logit models of joint location and mode choice from aggregated data. J Reg Sci 21(2):223–242

    Article  Google Scholar 

  • Anas A (1983) Discrete choice theory, information theory and the multinomial logit and gravity models. Transp Res 17:13–23

    Article  Google Scholar 

  • Bar-Gera H, Boyce D (2005) Userequilibrium route set analysis of a large road network. In: Mahmassani H (ed) Transportation and Traffic Theory: Flow, Dynamics and Human Interaction. Elsevier, Oxford, pp 673–692

  • Bikker JA (1992) Internal and external trade liberalization in the EEC: an econometric analysis of international trade flows. Econ Appl 45:91–119

    Google Scholar 

  • Boyce DE (2007) Forecasting travel on congested urban transportation networks: review and 4 prospects for network equilibrium models. Netw and Spat Econ 7:99–128

    Article  Google Scholar 

  • Boyce D, Bar-Gera H (2003) Validation of multiclass urban travel forecasting models combining origin–destination, mode, and route choices. J Reg Sci 43:517–540

    Article  Google Scholar 

  • Boyce DE, Bar-Gera H (2004) Multiclass combined models for urban travel forecasting. Netw and Spat Econ 4:115–124

    Article  Google Scholar 

  • Briceño L, Cominetti R, Cortés C, Martínez FJ (2008) An integrated behavioral model of land-use and transport system: an extended network equilibrium approach. Netw and Spat Econ 8:201–224

    Article  Google Scholar 

  • Burnside W (1917) A rapidly convergent series for log N! Messenger Math 46:157–159

    Google Scholar 

  • De Cea J, Fernández JE, De Grange L (2008) Combined models with hierarchical demand choices: a multi-objective entropy optimization approach. Transp Rev 28:415–438

    Article  Google Scholar 

  • De Grange L, Fernández JE, De Cea J (2010a) A consolidated model of trip distribution. Transp Res 46E:61–75

    Article  Google Scholar 

  • De Grange L, Fernández JE, De Cea J, Irrazábal M (2010b) Combined model calibration and spatial aggregation. Netw and Spat Econ 10:551–578

    Article  Google Scholar 

  • De Grange L, Ibeas A, González F (2011) A hierarchical gravity model with spatial correlation: mathematical formulation and parameter estimation. Netw and Spat Econ 11:439–463

    Article  Google Scholar 

  • De Grange L, Boyce D, González F, Ortúzar JD (2013) Integration of spatial correlation into a combined travel model with hierarchical levels. Spat Econ Anal 8:71–91

    Article  Google Scholar 

  • De Vos AF, Bikker JA (1982) Interdependent multiplicative models for allocation and aggregates; a generalization of gravity models. Onderzoeksverslag IAWE-80. Vrije Universiteit, Amsterdam

    Google Scholar 

  • Donoso P, De Grange L (2010) A microeconomic interpretation of the maximum entropy estimator of multinomial logit models and its equivalence to the maximum likelihood estimator. Entropy 12:2077–2084

    Article  Google Scholar 

  • Donoso P, De Grange L, González F (2011) A maximum entropy estimator for the aggregate hierarchical logit model. Entropy 13:1425–1445

    Article  Google Scholar 

  • Fang SC, Tsao SJ (1995) Linearly-constrained entropy maximization problem with quadratic cost and its applications to transportation planning problems. Transp Sci 29:353–365

    Article  Google Scholar 

  • Fang S, Rajasekera J, Tsao H (1997) Entropy Optimization and Mathematical Programming. Kluwer Academic Publishers, Norwell, MA

  • Feller W (1966). An introduction to probability theory and its applications - Vol 1, 2nd Edn. Wiley Publications, 50–51.

  • Florian M, Wu JH, He S (1999) A multi-class multi-mode variable demand network equilibrium model with hierarchical logit structures. IX Congreso Chileno de Ingeniería de Transporte, Santiago, 18–22 Octubre 1999

    Google Scholar 

  • Fotheringham AS (1983) A new set of spatial interaction models: the theory of competing destinations. Environ Plan 15A:15–36

    Article  Google Scholar 

  • Fotheringham AS (1986) Modeling hierarchical destination choice. Environ Plan 18A:401–418

    Article  Google Scholar 

  • Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gonçalves M, Souza JE (2001) Parameter estimation in a trip distribution model by random perturbation of a descent method. Transp Res 35B(2):137–161

  • Guldmann JM (1999) Competing destinations and intervening opportunities interaction models of inter-city telecommunication flows? Pap Reg Sci 78:179–194

    Article  Google Scholar 

  • Ham H, Tschangho JK, Boyce D (2005) Implementation and estimation of a combined model of interregional, multimodal commodity shipments and transportation network flows. Transp Res 39B:65–79

    Article  Google Scholar 

  • Hasan MK, Dashti HM (2007) A multiclass simultaneous transportation equilibrium model. Netw and Spat Econ 7:197–211

    Article  Google Scholar 

  • Hazewinkel M (2001). Stirling formula. Encyclopaedia of mathematics, Springer, ISBN 978–1556080104.

  • Kitthamkesorn S, Chen A, Ryu S, Xu X (2013) Modeling mode and route similarities in network equilibrium problem with Go-green modes. Netw and Spat Econ, Online First. doi:10.1007/s11067-013-9201-y

    Google Scholar 

  • Knudsen CD, Fotheringham AS (1986) Matrix comparison, goodness-of-fit and spatial interaction modeling. Int Reg Sci Rev 10:127–147

    Article  Google Scholar 

  • Morrison WI, Thumann RG (1980) Lagrangian Multiplier Approach to the Solution of a Special Constrained Matrix Problem. J Reg Sci 20(3):279–292

  • Orpana T, Lampinen J (2003) Building spatial choice models from aggregate data. J Reg Sci 43:319–347

    Article  Google Scholar 

  • Sen A, Matuszewsky Z (1991) Maximum likelihood estimates of gravity model parameters. J Reg Sci 31:469–486

    Article  Google Scholar 

  • Thorsen I, Gitlesen JP (1998) Empirical evaluation of alternative model specifications to predict commuting flows. J Reg Sci 38:273–292

    Article  Google Scholar 

  • Wilson AG (1970) Entropy in Urban and Regional Modeling. Pion, London

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding provided by the Fondecyt 1140163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis de Grange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Grange, L., González, F., Muñoz, J.C. et al. An Improved Stirling Approximation for Trip Distribution Models. Netw Spat Econ 14, 531–548 (2014). https://doi.org/10.1007/s11067-014-9253-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-014-9253-7

Keywords

Navigation