Skip to main content
Log in

A Hierarchical Gravity Model with Spatial Correlation: Mathematical Formulation and Parameter Estimation

  • Published:
Networks and Spatial Economics Aims and scope Submit manuscript

Abstract

This study presents a hierarchical trip distribution gravity model that can accommodate various spatial correlation structures. It is formulated on the basis of the solution to an equivalent optimization problem, and its parameters are estimated using a sequential maximum likelihood procedure. We conclude that accounting for spatial correlation through a hierarchical structure incorporated into gravity-type trip distribution models significantly increases their explanatory and predictive powers and improves the results they generate for use in transportation system planning processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamsson T, Lundqvist L (1999) Formulation and estimation of combined network equilibrium models with applications to Stockholm. Transp sci 33:80–100 doi:10.1287/trsc.33.1.80

    Article  Google Scholar 

  • Anas A (1981) The estimation of multinomial logit models of joint location and mode choice from aggregated data. J reg sci 21(2):223–242 doi:10.1111/j.1467-9787.1981.tb00696.x

    Article  Google Scholar 

  • Anselin L, Bera A (1988) Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah A, Giles DEA (eds) handbook of applied economic statistics. Dekker, New York, pp 237–289

    Google Scholar 

  • Arbia G (2006) Spatial econometrics. Springer ed

  • Beckman MJ, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Yale University Press, New Haven, Connecticut

    Google Scholar 

  • Cohon JL (1978) Multi-Objective programming and planning. Academic Press Inc, London

    Google Scholar 

  • Congdon P (1992) Aspects of general linear modeling of migration. Stat 41(2):133–153 doi:10.2307/2348246

    Google Scholar 

  • De Cea J, Fernandez JE, Soto A, Dekock V (2005) Solving network equilibrium on multimodal urban transportation networks with multiple user classes. Transp rev 25(3):293–317

    Article  Google Scholar 

  • De Cea J, Fernandez JE, De Grange L (2008) Combined models with hierarchical demand choices: a multi-objective entropy optimization approach. Transp rev 28:415–438 doi:10.1080/01441640701763128

    Article  Google Scholar 

  • De Grange L, Troncoso R, Ibeas A, González F (2009). Gravity model estimation with proxy variables and the impact of endogeneity on transportation planning. Transportation Research, 43A, 105–116 doi:10.1016/j.tra.2008.07.002

  • De Vries J, Nijkamp P, Rietveld P (2000) Alonso’s General Theory of Movement. TI 2000-062/3 Tinbergen Institute Discussion Paper

  • Erlander S, Stewart NF (1990) The Gravity Model in Transportation Analysis, VSP Utrecht

  • Evans S (1976) Derivation and analysis of some models for combining distribution and assignment. Transp rev 10:37–57 doi:10.1016/0041-1647(76)90100-3

    Article  Google Scholar 

  • Fang SC, Tsao SJ (1995) Linearly-constrained entropy maximization problem with quadratic cost and its applications to transportation planning problems. Transp rev 29(4):353–365 doi:10.1287/trsc.29.4.353

    Google Scholar 

  • Fisk C (1980) Some developments in equilibrium traffic assignment. Transp rev 14B:243–255

    Google Scholar 

  • Flowerdew R, Aitken M (1982) A method of fitting the gravity model based on the Poisson distribution. J reg sci 22:2 doi:10.1111/j.1467-9787.1982.tb00744.x

    Article  Google Scholar 

  • Fotheringham AS (1983) A new set of spatial interaction models: the theory of competing destinations. Environ plann A 15:15–36 doi:10.1068/a150015

    Article  Google Scholar 

  • Fotheringham AS (1986) Modeling hierarchical destination choice. Environ plann A 18:401–418 doi:10.1068/a180401

    Article  Google Scholar 

  • Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: Formulations and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  • Hensher DA (1986) Sequential and full information maximum likelihood estimation of a nested logit model. Rev Econ Stat 56:657–667 doi:10.2307/1924525

    Article  Google Scholar 

  • Hitchcock FL (1941) The distribution of a product from several sources to numerous localities, J Math. and Phys 20:224–230

    Google Scholar 

  • Hu P, Pooler J (2002) An empirical test of the competing destinations model. J geogr syst 4(3):301–323 doi:10.1007/s101090200088

    Article  Google Scholar 

  • Kirby HR, Leese MN (1978) Trip-distribution calculations and sampling error: some theoretical aspects. Environ plann A 10:837–851 doi:10.1068/a100837

    Article  Google Scholar 

  • Knudsen CD, Fotheringham AS (1986) Matrix comparison, goodness-of-fit and spatial interaction modeling. Int reg sci rev 10:127–147 doi:10.1177/016001768601000203

    Article  Google Scholar 

  • Ortuzar JD, Willumsen LG (2001) Modeling Transport. Wiley & Sons, Chichester

    Google Scholar 

  • Roy JR, Thill JC (2004) Spatial interaction modeling. Pap reg sci 83:339–361 doi:10.1007/s10110-003-0189-4

    Article  Google Scholar 

  • Schneider M (1959) Gravity models and trip distribution theory. Papers / Regional Science Association. Reg Sci Assoc Meet 5:51–56

    Google Scholar 

  • Sen A (1986) Maximum likelihood estimation of gravity model parameters. J reg sci 26(3):461–474 doi:10.1111/j.1467-9787.1986.tb01054.x

    Article  Google Scholar 

  • Sen A, Matuszewsky Z (1991) Maximum likelihood estimates of gravity model parameters. J reg sci 31(4):469–486 doi:10.1111/j.1467-9787.1991.tb00161.x

    Article  Google Scholar 

  • Stouffer SA (1940) Intervening opportunities: a theory relating mobility and distance. Am sociol rev 5(6):845–867 doi:10.2307/2084520

    Article  Google Scholar 

  • SECTRA (2001). Actualización de Encuestas de Origen y Destino de Viajes, V Etapa. Conducted by the Pontificia Universidad Católica de Chile through its research unit, the Dirección de Investigaciones Científicas y Tecnológicas (DICTUC)

  • Thorsen I, JP Gitlesen (1998) Empirical evaluation of alternative model specifications to predict commuting flows. J reg sci 38:273–292

    Article  Google Scholar 

  • Wilson AG (1970) Entropy in Urban and Regional Modeling. Pion, London

    Google Scholar 

  • Winkelmann R, Zimmermann KF (1995) Recent developments in count data modeling: theory and application. J econ surv 9(1):1–24 doi:10.1111/j.1467-6419.1995.tb00108.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis de Grange.

Appendices

Appendix A: Alternative gravity models with spatial correlation

The hierarchical gravity model that first determines the trip generation for each zone and then the trip distribution (see Fig. 8) is equivalent to a model in which the trips generated within a single zone are correlated.

Fig. 8
figure 8

Hierarchical structure of trip distribution with correlation of trips generated in a single zone

The equivalent optimization problem from which this model is derived is as follows:

$$\mathop {\min }\limits_{\left\{ {T_i ,T_{ij} } \right\}} {\text{ }}Z = \sum\limits_i {\sum\limits_j {T_{ij} C_{ij} } } + \frac{1}{\beta }\sum\limits_i {T_i \left( {\ln T_i - 1} \right)} + \frac{1}{\lambda }\left[ {\sum\limits_i {\sum\limits_j {T_{ij} \left( {\ln T_{ij} - 1} \right)} } - \sum\limits_i {T_i \left( {\ln T_i - 1} \right)} } \right]$$
(45)

s.t.:

$$\sum\limits_j {T_{ij} } = T_i \quad \forall i\quad \left( {\mu _i } \right)$$
(46)
$$\sum\limits_i {T_i } = T\quad \quad \left( \rho \right)$$
(47)

where T ij is the number of modeled trips between the origin-destination pair (i, j), C ij is the cost of traveling between an O-D pair, Ti is the number of modeled trips generated by zone i, and T is the total trips in the system (note that T is known and exogenous, but T i is endogenous).

The corresponding Lagrangian function of problem (45)–(47) is

$$L = Z + \sum\limits_i {\mu _i \left( {\sum\limits_j {T_{ij} } - T_i } \right)} + \rho \left( {\sum\limits_i {T_i } - T} \right)$$
(48)

The optimality conditions for (48) are

$$\frac{{\partial L}}{{\partial T_{ij} }} = C_{ij} + \frac{1}{\lambda }\ln T_{ij} + \mu _i = 0 \to T_{ij} = e^{ - \lambda \left( {C_{ij} + \mu _i } \right)} $$
(49)
$$\frac{{\partial L}}{{\partial T_i }} = \frac{1}{\beta }\ln T_i - \frac{1}{\lambda }\ln T_i - \mu _i + \rho = 0$$
(50)

Given that \(\sum\limits_j {T_{ij} = T_i } \), by (49) we obtain the following:

$$\sum\limits_j {T_{ij} } = \sum\limits_j {e^{ - \lambda \left( {C_{ij} + \mu _i } \right)} } = e^{ - \lambda \mu _i } \sum\limits_j {e^{ - \lambda C_{ij} } = T_i } $$
(51)

Dividing T ij in (49) by T i in (51) we then have

$$\frac{{T_{ij} }}{{T_i }} = \frac{{e^{ - \lambda C_{ij} } }}{{\sum\limits_j {e^{ - \lambda C_{ij} } } }} = P_{ij/i} $$
(52)

Equation (52) gives the proportion traveling between pair (i, j) generated by zone i.

Taking the natural logarithm of (51), we obtain

$$\ln T_i = - \lambda \mu _i + \ln \sum\limits_j {e^{ - \lambda C_{ij} } } \to \frac{1}{\lambda }\ln T_i + \mu _i = \frac{1}{\lambda }\ln \sum\limits_j {e^{ - \lambda C_{ij} } } $$
(53)

Substituting (53) into (50), we get

$$\frac{1}{\beta }\ln T_i - \frac{1}{\lambda }\ln \sum\limits_j {e^{ - \lambda C_{ij} } } + \rho = 0$$
(54)
$$T_i = e^{ - \rho + \frac{\beta }{\lambda }\ln \sum\limits_j {e^{ - \lambda C_{ij} } } } $$
(55)

Dividing (55) by \(\sum\limits_i {T_i } = T\) gives

$$\frac{{T_i }}{T} = \frac{{e^{ - \beta L_i } }}{{\sum\limits_i {e^{ - \beta L_i } } }} = P_i $$
(56)

where \(L_i = - \frac{1}{\lambda }\ln \left( {\sum\limits_j {e^{ - \lambda C_{ij} } } } \right)\). Finally, by (52) and (56) we can define

$$\frac{{T_{ij} }}{T} = \underbrace {\frac{{e^{ - \beta L_i } }}{{\sum\limits_i {e^{ - \beta L_i } } }}}_{P_i }\underbrace {\frac{{e^{ - \lambda C_{ij} } }}{{\sum\limits_j {e^{ - \lambda C_{ij} } } }}}_{P_{ij/i} } = P_{ij} $$
(57)

If we now consider a model in which all trips with the same destination zone are correlated, the equivalent optimization problem is the following:

$$\mathop {\min }\limits_{\left\{ {T_j ,T_{ij} } \right\}} {\text{ }}Z = \sum\limits_i {\sum\limits_j {T_{ij} C_{ij} } } + \frac{1}{\beta }\sum\limits_j {T_j \left( {\ln T_j - 1} \right)} + \frac{1}{\lambda }\left[ {\sum\limits_i {\sum\limits_j {T_{ij} \left( {\ln T_{ij} - 1} \right)} } - \sum\limits_j {T_j \left( {\ln T_j - 1} \right)} } \right]$$
(58)

s.t.:

$$\sum\limits_i {T_{ij} } = T_j \quad \forall j\quad \left( {\gamma _j } \right)$$
(59)
$$\sum\limits_j {T_j } = T\quad \quad \left( \rho \right)$$
(60)

where T j is the number of modeled trips attracted by zone j. The optimality conditions for (58)–(60) are

$$\frac{{T_{ij} }}{{T_j }} = \frac{{e^{ - \lambda C_{ij} } }}{{\sum\limits_i {e^{ - \lambda C_{ij} } } }} = P_{ij/j} $$
(61)
$$\frac{{T_j }}{T} = \frac{{e^{ - \beta L_j } }}{{\sum\limits_j {e^{ - \beta L_j } } }} = P_j $$
(62)
$$\frac{{T_{ij} }}{T} = \underbrace {\frac{{e^{ - \beta L_j } }}{{\sum\limits_j {e^{ - \beta L_j } } }}}_{P_j }\underbrace {\frac{{e^{ - \lambda C_{ij} } }}{{\sum\limits_i {e^{ - \lambda C_{ij} } } }}}_{P_{ij/j} } = P_{ij} $$
(63)

where \(L_j = - \frac{1}{\lambda }\ln \left( {\sum\limits_i {e^{ - \lambda C_{ij} } } } \right)\).

Appendix B: Sensitivity analysis

In this sensitivity analysis, the 37 trip zones, defined to coincide with Santiago’s administrative districts, were grouped into 6 areas as shown in Fig. 9. In this sensitivity case, the hierarchical model (called HGM-S) involves two decisions: the first is the choice of area in which a trip is to be made, and the second is the choice of a specific origin-destination pair whose districts lie within the chosen area. It follows that all (i, j) pairs whose origin and destination districts are in the same area are intercorrelated and define Group 1, while the pairs with origin and destination districts located in different areas are intercorrelated and constitute Group 2. In this example, k = 1, 2 (two ρ k parameters).

Fig. 9
figure 9

New spatial aggregation of Santiago trip zones

In Table 7 we see the HGM-S results compared with the SGM and the HGM (see Section 3.2).

Table 7 Results of the estimation of HGM-S, HGM and SGM models

We can test the hypothesis that the two models (HGM-S and SGM) are not equivalent using the likelihood ratio test:

$$LR = - 2\left( { - 2,410.13 + 2,407.15} \right) = 5.96 >\chi _{\left[ {0.95;1} \right]}^2 = 3,84$$
(64)

Using Welch’s t test, it was also found that the difference between the values of λ for HGM-S (−0.35) and SGM (−0.32) was significantly different from zero (at 95% confidence):

$$\left. \begin{aligned}& H_0 :\lambda _{HGM - S} - \lambda _{SGM} = 0 \\& H_1 :\lambda _{HGM - S} - \lambda _{SGM} \ne 0 \\ \end{aligned} \right\} \to \left| {\frac{{0.35 - 0.32}}{{0.007}}} \right| = 4.28 >1.96$$
(65)

We therefore again conclude that λ SGM is biased because of the absence of spatial correlation in SGM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Grange, L., Ibeas, A. & González, F. A Hierarchical Gravity Model with Spatial Correlation: Mathematical Formulation and Parameter Estimation. Netw Spat Econ 11, 439–463 (2011). https://doi.org/10.1007/s11067-008-9097-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11067-008-9097-0

Keywords

Navigation