Skip to main content

Advertisement

Log in

Purpurogallin Reverses Neuronal Apoptosis and Enhances “M2” Polarization of Microglia Under Ischemia via Mediating the miR-124-3p/TRAF6/NF-κB Axis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Purpurogallin (PPG) has been demonstrated to exert an anti-inflammatory function in neurological diseases. This study aimed at investigating the role of PPG on microglial polarization post ischemic stroke as well as the underlying mechanism. Mouse hippocampal neurons HT-22 and microglial BV2 cells were treated by oxygen and glucose deprivation to simulate an in-vitro ischemia model. qRT-PCR and ELISA examined expression of cytokines in microglia. CCK8 and flow cytometry measured HT-22 cell viability and apoptosis, respectively. The levels of miR-124-3p and TRAF6/NF-κB were determined. A mouse cerebral ischemia model was set up using middle cerebral artery occlusion (MCAO) method. After being dealt with PPG, the neurological functions, brain edema, neuronal apoptosis, and microglia activation of the mice were evaluated. As suggested by the results, PPG transformed “M1” to “M2” polarization of BV2 cells, and abated HT-22 cell apoptosis. PPG enhanced the neurological functions, alleviated brain edema, and decreased neuroinflammatory responses, and neuronal apoptosis in the brain lesions of MCAO mice. Furthermore, PPG enhanced miR-124-3p and repressed the TRAF6/NF-κB pathway. miR-124-3p suppressed the TRAF6/NF-κB pathway by targeting TRAF6. Collectively, PPG alleviates ischemia-induced neuronal damage and microglial inflammation by modulating the miR-124-3p/TRAF6/NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data sets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Boursin P, Paternotte S, Dercy B, Sabben C, Maïer B (2018) Sémantique, épidémiologie et sémiologie des accidents vasculaires cérébraux [Semantics, epidemiology and semiology of stroke]. Soins 63(828):24–27. https://doi.org/10.1016/j.soin.2018.06.008 (French)

  2. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–789. https://doi.org/10.1189/jlb.1109766

    Article  CAS  Google Scholar 

  3. Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao J, Fu Q, Liu Y, Li H, Lou J, Hou W, Mi W, Ma Y (2020) Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflamm 17(1):270. https://doi.org/10.1186/s12974-020-01946-7

    Article  CAS  Google Scholar 

  4. Liu ZJ, Ran YY, Qie SY, Gong WJ, Gao FH, Ding ZT, Xi JN (2019) Melatonin protects against ischemic stroke by modulating microglia/macrophage polarization toward anti-inflammatory phenotype through STAT3 pathway. CNS Neurosci Ther 25(12):1353–1362. https://doi.org/10.1111/cns.13261

    Article  CAS  Google Scholar 

  5. Zhen AX, Piao MJ, Hyun YJ, Kang KA, Ryu YS, Cho SJ, Kang HK, Koh YS, Ahn MJ, Kim TH, Hyun JW (2019) Purpurogallin protects keratinocytes from damage and apoptosis induced by ultraviolet B radiation and particulate matter 2.5. Biomol Ther 27(4):395–403. https://doi.org/10.4062/biomolther.2018.151

    Article  Google Scholar 

  6. Zeng LH, Wu TW (1992) Purpurogallin is a more powerful protector of kidney cells than Trolox and allopurinol. Biochem Cell Biol 70(8):684–690. https://doi.org/10.1139/o92-104

    Article  CAS  Google Scholar 

  7. Wu TW, Wu J, Zeng LH, Au JX, Carey D, Fung KP (1994) Purpurogallin: in vivo evidence of a novel and effective cardioprotector. Life Sci 54(2):PL23–PL28

    Article  CAS  Google Scholar 

  8. Wu TW, Zeng LH, Wu J, Carey D (1991) Purpurogallin—a natural and effective hepatoprotector in vitro and in vivo. Biochem Cell Biol 69(10–11):747–750. https://doi.org/10.1139/o91-113

    Article  CAS  Google Scholar 

  9. Kim TH, Ku SK, Lee IC, Bae JS (2012) Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Rep 45(3):200–205

    Article  CAS  Google Scholar 

  10. Chang CZ, Lin CL, Wu SC, Kwan AL (2014) Purpurogallin, a natural phenol, attenuates high-mobility group box 1 in subarachnoid hemorrhage induced vasospasm in a rat model. Int J Vasc Med 2014:254270. https://doi.org/10.1155/2014/254270

    Article  Google Scholar 

  11. de Correia Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M (2019) Deciphering miRNAs’ action through miRNA Editing. Int J Mol Sci 20(24):6249. https://doi.org/10.3390/ijms20246249

    Article  CAS  Google Scholar 

  12. Huang L, Ma Q, Li Y, Li B, Zhang L (2018) Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp Neurol 300:41–50. https://doi.org/10.1016/j.expneurol.2017.10.024

    Article  CAS  Google Scholar 

  13. Dong H, Cui B, Hao X (2019) MicroRNA-22 alleviates inflammation in ischemic stroke via p38 MAPK pathways. Mol Med Rep 20(1):735–744. https://doi.org/10.3892/mmr.2019.10269

    Article  CAS  Google Scholar 

  14. Liu F, Qiu F, Chen H (2021) miR-124-3p ameliorates isoflurane-induced learning and memory impairment via targeting STAT3 and inhibiting neuroinflammation. NeuroImmunoModulation 13:1–7. https://doi.org/10.1159/000515661

    Article  CAS  Google Scholar 

  15. Huang S, Ge X, Yu J, Han Z, Yin Z, Li Y, Chen F, Wang H, Zhang J, Lei P (2018) Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J 32(1):512–528. https://doi.org/10.1096/fj.201700673R

    Article  CAS  Google Scholar 

  16. Dou Y, Tian X, Zhang J, Wang Z, Chen G (2018) Roles of TRAF6 in central nervous system. Curr Neuropharmacol 16(9):1306–1313. https://doi.org/10.2174/1570159X16666180412094655

    Article  CAS  Google Scholar 

  17. Lu Y, Cao DL, Ma LJ, Gao YJ (2022) TRAF6 contributes to CFA-induced spinal microglial activation and chronic inflammatory pain in mice. Cell Mol Neurobiol 42(5):1543–1555. https://doi.org/10.1007/s10571-021-01045-y

    Article  CAS  Google Scholar 

  18. Wang S, Zhang X, Zhai L, Sheng X, Zheng W, Chu H, Zhang G (2018) Atorvastatin attenuates cognitive deficits and neuroinflammation induced by Aβ1-42 involving modulation of TLR4/TRAF6/NF-κB pathway. J Mol Neurosci 64(3):363–373. https://doi.org/10.1007/s12031-018-1032-3

    Article  CAS  Google Scholar 

  19. Li T, Qin JJ, Yang X, Ji YX, Guo F, Cheng WL, Wu X, Gong FH, Hong Y, Zhu XY, Gong J, Wang Z, Huang Z, She ZG, Li H (2017) The ubiquitin E3 ligase TRAF6 exacerbates ischemic stroke by ubiquitinating and activating Rac1. J Neurosci 37(50):12123–12140. https://doi.org/10.1523/JNEUROSCI.1751-17.2017

    Article  CAS  Google Scholar 

  20. Liang YP, Liu Q, Xu GH, Zhang J, Chen Y, Hua FZ, Deng CQ, Hu YH (2019) The lncRNA ROR/miR-124-3p/TRAF6 axis regulated the ischaemia reperfusion injury-induced inflammatory response in human cardiac myocytes. J Bioenergy Biomembr 51(6):381–392. https://doi.org/10.1007/s10863-019-09812-9

    Article  CAS  Google Scholar 

  21. Zhang BY, Wang GR, Ning WH, Liu J, Yang S, Shen Y, Wang Y, Zhao MX, Li L (2020) Electroacupuncture pretreatment elicits tolerance to cerebral ischemia/reperfusion through inhibition of the GluN2B/m-calpain/p38 MAPK proapoptotic pathway. Neural Plast 2020:8840675

    Article  Google Scholar 

  22. Ren Y, Ma X, Wang T, Cheng B, Ren L, Dong Z, Liu H (2021) The cerebroprotein hydrolysate-I plays a neuroprotective effect on cerebral ischemic stroke by inhibiting MEK/ERK1/2 signaling pathway in rats. Neuropsychiatr Dis Treat 17:2199–2208. https://doi.org/10.2147/NDT.S313807

    Article  Google Scholar 

  23. Huang D, Zhou J, Li W, Zhang L, Wang X, Liu Q (2021) Casticin protected against neuronal injury and inhibited the TLR4/NF-κB pathway after middle cerebral artery occlusion in rats. Pharmacol Res Perspect 9(2):e00752. https://doi.org/10.1002/prp2.752

    Article  CAS  Google Scholar 

  24. Song F, Zeng K, Liao L, Yu Q, Tu P, Wang X (2016) Schizandrin A inhibits microglia-mediated neuroninflammation through inhibiting TRAF6-NF-κB and Jak2-Stat3 signaling pathways. PLoS ONE 11(2):e0149991. https://doi.org/10.1371/journal.pone.0149991

    Article  CAS  Google Scholar 

  25. Akella A, Bhattarai S, Dharap A (2019) Long noncoding RNAs in the pathophysiology of ischemic stroke. Neuromol Med 21(4):474–483. https://doi.org/10.1007/s12017-019-08542-w

    Article  CAS  Google Scholar 

  26. Xu S, Lu J, Shao A, Zhang JH, Zhang J (2020) Glial cells: role of the immune response in ischemic stroke. Front Immunol 11:294. https://doi.org/10.3389/fimmu.2020.00294

    Article  CAS  Google Scholar 

  27. Ma Y, Wang J, Wang Y, Yang GY (2017) The biphasic function of microglia in ischemic stroke. Prog Neurobiol 157:247–272. https://doi.org/10.1016/j.pneurobio.2016.01.005

    Article  CAS  Google Scholar 

  28. Jiang CT, Wu WF, Deng YH, Ge JW (2020) Modulators of microglia activation and polarization in ischemic stroke (Review). Mol Med Rep 21(5):2006–2018. https://doi.org/10.3892/mmr.2020.11003

    Article  CAS  Google Scholar 

  29. He Y, Gao Y, Zhang Q, Zhou G, Cao F, Yao S (2020) IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH. Neuroscience 437:161–171. https://doi.org/10.1016/j.neuroscience.2020.03.008

    Article  CAS  Google Scholar 

  30. Wang J, Xing H, Wan L, Jiang X, Wang C, Wu Y (2018) Treatment targets for M2 microglia polarization in ischemic stroke. Biomed Pharmacother 105:518–525. https://doi.org/10.1016/j.biopha.2018.05.143

    Article  CAS  Google Scholar 

  31. Zhao R, Ying M, Gu S, Yin W, Li Y, Yuan H, Fang S, Li M (2019) Cysteinyl leukotriene receptor 2 is involved in inflammation and neuronal damage by mediating microglia M1/M2 polarization through NF-κB pathway. Neuroscience 422:99–118. https://doi.org/10.1016/j.neuroscience.2019.10.048

    Article  CAS  Google Scholar 

  32. Xie X, Zu X, Liu F, Wang T, Wang X, Chen H, Liu K, Wang P, Liu F, Zheng Y, Bode AM, Dong Z, Kim DJ (2019) Purpurogallin is a novel mitogen-activated protein kinase kinase 1/2 inhibitor that suppresses esophageal squamous cell carcinoma growth in vitro and in vivo. Mol Carcinog 58(7):1248–1259. https://doi.org/10.1002/mc.23007

    Article  CAS  Google Scholar 

  33. Ku SK, Bae JS (2014) Antiplatelet and antithrombotic activities of purpurogallin in vitro and in vivo. BMB Rep 47(7):376–381. https://doi.org/10.5483/bmbrep.2014.47.7.195

    Article  Google Scholar 

  34. Sugiyama H, Fung KP, Wu TW (1993) Purpurogallin as an antioxidant protector of human erythrocytes against lysis by peroxyl radicals. Life Sci 53(4):PL39–PL43. https://doi.org/10.1016/0024-3205(93)90759-v

    Article  CAS  Google Scholar 

  35. Park HY, Kim TH, Kim CG, Kim GY, Kim CM, Kim ND, Kim BW, Hwang HJ, Choi YH (2013) Purpurogallin exerts anti-inflammatory effects in lipopolysaccharide-stimulated BV2 microglial cells through the inactivation of the NF-κB and MAPK signaling pathways. Int J Mol Med 32(5):1171–1178. https://doi.org/10.3892/ijmm.2013.1478

    Article  CAS  Google Scholar 

  36. Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F (2017) Regulation of microglial activation in stroke. Acta Pharmacol Sin 38(4):445–458. https://doi.org/10.1038/aps.2016.162

    Article  CAS  Google Scholar 

  37. Zhao P, Li C, Chen B, Sun G, Chao H, Tu Y, Bao Z, Fan L, Du X, Ji J (2020) Up-regulation of CHMP4B alleviates microglial necroptosis induced by traumatic brain injury. J Cell Mol Med 24(15):8466–8479. https://doi.org/10.1111/jcmm.15406

    Article  CAS  Google Scholar 

  38. Liu R, Liao XY, Tang JC, Pan MX, Chen SF, Lu PX, Lu LJ, Zhang ZF, Zou YY, Bu LH, Qin XP, Wan Q (2019) BpV(pic) confers neuroprotection by inhibiting M1 microglial polarization and MCP-1 expression in rat traumatic brain injury. Mol Immunol 112:30–39. https://doi.org/10.1016/j.molimm.2019.04.010

    Article  CAS  Google Scholar 

  39. Liu N, Sun H, Li X, Cao W, Peng A, Dong S, Yu Z (2021) Downregulation of lncRNA KCNQ1OT1 relieves traumatic brain injury induced neurological deficits via promoting “M2” microglia polarization. Brain Res Bull 171:91–102. https://doi.org/10.1016/j.brainresbull.2021.03.004

    Article  CAS  Google Scholar 

  40. Jiang GL, Yang XL, Zhou HJ, Long J, Liu B, Zhang LM, Lu D (2021) cGAS knockdown promotes microglial M2 polarization to alleviate neuroinflammation by inhibiting cGAS-STING signaling pathway in cerebral ischemic stroke. Brain Res Bull 171:183–195. https://doi.org/10.1016/j.brainresbull.2021.03.010

    Article  CAS  Google Scholar 

  41. Min W, Wu Y, Fang Y, Hong B, Dai D, Zhou Y, Liu J, Li Q (2022) Bone marrow mesenchymal stem cells-derived exosomal microRNA-124-3p attenuates hypoxic-ischemic brain damage through depressing tumor necrosis factor receptor associated factor 6 in newborn rats. Bioengineered 13(2):3194–3206. https://doi.org/10.1080/21655979.2021.2016094

    Article  CAS  Google Scholar 

  42. Vuokila N, Aronica E, Korotkov A, van Vliet EA, Nuzhat S, Puhakka N, Pitkänen A (2020) Chronic regulation of miR-124-3p in the perilesional cortex after experimental and human TBI. Int J Mol Sci 21(7):2418. https://doi.org/10.3390/ijms21072418

    Article  CAS  Google Scholar 

  43. Fang Y, Hong X (2021) miR-124-3p inhibits microglial secondary inflammation after basal ganglia hemorrhage by targeting TRAF6 and repressing the activation of NLRP3 inflammasome. Front Neurol 3(12):653321. https://doi.org/10.3389/fneur.2021.653321

    Article  Google Scholar 

  44. Juźwik CA, Drake S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS, Fournier AE (2019) microRNA dysregulation in neurodegenerative diseases: a systematic review. Prog Neurobiol 182:101664. https://doi.org/10.1016/j.pneurobio.2019.101664

    Article  CAS  Google Scholar 

  45. Schindler CR, Woschek M, Vollrath JT, Kontradowitz K, Lustenberger T, Störmann P, Marzi I, Henrich D (2020) miR-142-3p expression is predictive for severe Traumatic Brain Injury (TBI) in trauma patients. Int J Mol Sci 21(15):5381. https://doi.org/10.3390/ijms21155381

    Article  CAS  Google Scholar 

  46. Vuokila N, Lukasiuk K, Bot AM, van Vliet EA, Aronica E, Pitkänen A, Puhakka N (2018) miR-124-3p is a chronic regulator of gene expression after brain injury. Cell Mol Life Sci 75(24):4557–4581. https://doi.org/10.1007/s00018-018-2911-z

    Article  CAS  Google Scholar 

  47. He XW, Shi YH, Liu YS, Li GF, Zhao R, Hu Y, Lin CC, Zhuang MT, Su JJ, Liu JR (2019) Increased plasma levels of miR-124-3p, miR-125b-5p and miR-192-5p are associated with outcomes in acute ischaemic stroke patients receiving thrombolysis. Atherosclerosis 289:36–43. https://doi.org/10.1016/j.atherosclerosis.2019.08.002

    Article  CAS  Google Scholar 

  48. Leung LY, Chan CP, Leung YK, Jiang HL, Abrigo JM, de Wang F, Chung JS, Rainer TH, Graham CA (2014) Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke. Clin Chim Acta 10(433):139–144. https://doi.org/10.1016/j.cca.2014.03.007

    Article  CAS  Google Scholar 

  49. Xu SY, Jiang XL, Liu Q, Xu J, Huang J, Gan SW, Lu WT, Zhuo F, Yang M, Sun SQ (2019) Role of rno-miR-124-3p in regulating MCT1 expression in rat brain after permanent focal cerebral ischemia. Genes Dis 6(4):398–406. https://doi.org/10.1016/j.gendis.2019.01.002

    Article  CAS  Google Scholar 

  50. Gao W, Yang H (2019) MicroRNA-124-3p attenuates severe community-acquired pneumonia progression in macrophages by targeting tumor necrosis factor receptor-associated factor 6. Int J Mol Med 43(2):1003–1010. https://doi.org/10.3892/ijmm.2018.4011

    Article  CAS  Google Scholar 

  51. Huo Y, Zhang K, Zhang T, Han Y, Hu Z (2021) MiR-124-3p alleviates the dezocine tolerance against pain by regulating TRAF6 in a rat model. NeuroReport 32(1):44–51. https://doi.org/10.1097/WNR.0000000000001559

    Article  CAS  Google Scholar 

  52. Yang Y, Tan X, Xu J, Wang T, Liang T, Xu X, Ma C, Xu Z, Wang W, Li H, Shen H, Li X, Dong W, Chen G (2020) Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-κB pathway after intracerebral hemorrhage. Biomed Pharmacother 126:110044

    Article  CAS  Google Scholar 

  53. Cui Y, Wang Y, Zhao D, Feng X, Zhang L, Liu C (2018) Loganin prevents BV-2 microglia cells from Aβ1-42 -induced inflammation via regulating TLR4/TRAF6/NF-κB axis. Cell Biol Int 42(12):1632–1642. https://doi.org/10.1002/cbin.11060

    Article  CAS  Google Scholar 

  54. Zhu S, Tang S, Su F (2018) Dioscin inhibits ischemic stroke-induced inflammation through inhibition of the TLR4/MyD88/NF-κB signaling pathway in a rat model. Mol Med Rep 17(1):660–666. https://doi.org/10.3892/mmr.2017.7900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization & Methodology: ZC; Formal analysis and investigation: ZC, XL, XY; Data curation & Resources: RY, YD; Writing—review and editing: ZC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zongxin Cheng.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Our study was approved by the Ethics Review Board of Nanchang First Hospital.

Consent to Participate and Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11064_2022_3752_MOESM1_ESM.tif

Supplementary file1 Supplementary figure 1: PPG repressed neuronal apoptosis induced by microgliaA: The conditioned medium. B: CCK8 assay measured neuronal apoptosis. C: Western blot confirmed the protein profiles of pro-apoptotic proteins (Bax, Bad, and C-caspase3) in HT22 neurons. (TIF 1138 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Li, X., Ye, X. et al. Purpurogallin Reverses Neuronal Apoptosis and Enhances “M2” Polarization of Microglia Under Ischemia via Mediating the miR-124-3p/TRAF6/NF-κB Axis. Neurochem Res 48, 375–392 (2023). https://doi.org/10.1007/s11064-022-03752-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03752-4

Keywords

Navigation