Skip to main content

Advertisement

Log in

Review on the Therapeutic Potential of Curcumin and its Derivatives on Glioma Biology

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Gliomas are common and aggressive brain tumors that carry a poor prognosis. The current multimodal therapeutic option for glioma includes surgery subsequently temozolomide chemotherapy and/or radiation; but gliomas are often associated with multidrug resistance, intensive adverse events, and tumor relapse. Thus, novel interventions that can enhance successful chemo-prevention and overcome therapeutic resistance are urgently needed. Phytochemicals have several biological properties with multi-target sites and relatively limited degrees of toxicity. Curcumin is a natural polyphenolic compound with several anti-tumor effects which potentially inhibit tumor growth, development, proliferation, invasion, dissemination, and angiogenesis in different human malignancies. Experimental model studies have demonstrated that curcumin attenuates glioma cell viability by G2/M cell cycle arrest, apoptosis, induction of autophagy, gene expression alteration, and disruption of multi-molecular pathways. Moreover, curcumin has been reported to re-sensitize cancer to chemotherapeutics as well as augment the effect of radiotherapy on glioma cells. In this review, we have provided an update on the in vitro and in vivo effects of curcumin-based therapy on gliomas. We have also discussed the use of curcumin in combination therapies, its effectiveness on drug-resistant cells, and new formulations of curcumin in the treatment of gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, Nishikawa R, Rosenthal M, Wen PY, Stupp R (2015) Glioma. Nat Rev Dis Prim 1:1–18

    Google Scholar 

  2. Wang X, Deng J, Yuan J, Tang X, Wang Y, Chen H, Liu Y, Zhou L (2017) Curcumin exerts its tumor suppressive function via inhibition of NEDD4 oncoprotein in glioma cancer cells. Int J Oncol 51:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR (2019) Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol 15:405–417

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen R, Smith-Cohn M, Cohen AL, Colman H (2017) Glioma subclassifications and their clinical significance. Neurotherapeutics 14:284–297

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bush NAO, Chang SM, Berger MS (2017) Current and future strategies for treatment of glioma. Neurosurg Rev 40:1–14

    Article  PubMed  Google Scholar 

  6. Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  7. Alifieris C, Trafalis DT (2015) Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther 152:63–82

    Article  CAS  PubMed  Google Scholar 

  8. Jovčevska I, Kočevar N, Komel R (2013) Glioma and glioblastoma: how much do we (not) know? Mol Clin Oncol 1:935–941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Pangal DJ, Baertsch H, Kellman EM, Cardinal T, Brunswick A, Rutkowski M, Strickland B, Chow F, Attenello F, Zada G (2021) Complementary and alternative medicine for the treatment of gliomas: scoping review of clinical studies, patient outcomes, and toxicity profiles. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.04.096

    Article  PubMed  Google Scholar 

  10. Kundu M, Das S, Dhara D, Mandal M (2019) Prospect of natural products in glioma: a novel avenue in glioma management. Phytother Res 33:2571–2584

    Article  PubMed  Google Scholar 

  11. Slika L, Patra D (2020) Traditional uses, therapeutic effects and recent advances of curcumin: a mini-review. Mini Rev Med Chem 20:1072–1082

    Article  CAS  PubMed  Google Scholar 

  12. Hamzehzadeh L, Atkin SL, Majeed M, Butler AE, Sahebkar A (2018) The versatile role of curcumin in cancer prevention and treatment: a focus on PI3K/AKT pathway. J Cell Physiol 233:6530–6537

    Article  CAS  PubMed  Google Scholar 

  13. Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, Salehi H, Peyvandi M, Pawelek JM, Sahebkar A (2016) Curcumin: a new candidate for melanoma therapy? Int J Cancer 139:1683–1695

    Article  CAS  PubMed  Google Scholar 

  14. Bahrami A, A. Ferns G, (2021) Effect of curcumin and its derivates on gastric cancer: molecular mechanisms. Nutr Cancer 73:1553–1569

    Article  CAS  PubMed  Google Scholar 

  15. Ghandadi M, Sahebkar A (2017) Curcumin: an effective inhibitor of interleukin-6. Curr Pharm Des 23:921–931

    Article  CAS  PubMed  Google Scholar 

  16. Karimian MS, Pirro M, Majeed M, Sahebkar A (2017) Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev 33:55–63

    Article  CAS  PubMed  Google Scholar 

  17. Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M, Sahebkar A (2015) Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: a randomized controlled trial and an updated meta-analysis. Clin Nutr 34:1101–1108

    Article  CAS  PubMed  Google Scholar 

  18. Sahebkar A, Cicero AF, Simental-Mendía LE, Aggarwal BB, Gupta SC (2016) Curcumin downregulates human tumor necrosis factor-α levels: a systematic review and meta-analysis ofrandomized controlled trials. Pharmacol Res 107:234–242

    Article  CAS  PubMed  Google Scholar 

  19. Sahebkar A, Serban M-C, Ursoniu S, Banach M (2015) Effect of curcuminoids on oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J Funct Foods 18:898–909

    Article  CAS  Google Scholar 

  20. Shakeri A, Ward N, Panahi Y, Sahebkar A (2019) Anti-angiogenic activity of curcumin in cancer therapy: a narrative review. Curr Vasc Pharmacol 17:262–269

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  CAS  PubMed  Google Scholar 

  22. Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, Frautschy SA (2015) Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother 15:629–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A (2017) Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res 67:244–251

    Article  CAS  Google Scholar 

  24. Amel Zabihi N, Pirro M, JohnstonSahebkar PTA (2017) Is there a role for curcumin supplementation in the treatment of non-alcoholic fatty liver disease? the data suggest yes. Curr Pharm Des 23:969–982

    Article  CAS  Google Scholar 

  25. Saeidinia A, Keihanian F, Butler AE, Bagheri RK, Atkin SL, Sahebkar A (2018) Curcumin in heart failure: a choice for complementary therapy? Pharmacol Res 131:112–119

    Article  CAS  PubMed  Google Scholar 

  26. Lelli D, Sahebkar A, Johnston TP, Pedone C (2017) Curcumin use in pulmonary diseases: state of the art and future perspectives. Pharmacol Res 115:133–148

    Article  CAS  PubMed  Google Scholar 

  27. Bavarsad K, Barreto GE, Hadjzadeh M-A-R, Sahebkar A (2019) Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol Neurobiol 56:1391–1404

    Article  CAS  PubMed  Google Scholar 

  28. Mokhtari-Zaer A, Marefati N, Atkin SL, Butler AE, Sahebkar A (2019) The protective role of curcumin in myocardial ischemia–reperfusion injury. J Cell Physiol 234:214–222

    Article  CAS  Google Scholar 

  29. Ganjali S, Blesso CN, Banach M, Pirro M, Majeed M, Sahebkar A (2017) Effects of curcumin on HDL functionality. Pharmacol Res 119:208–218

    Article  CAS  PubMed  Google Scholar 

  30. Panahi Y, Khalili N, Hosseini MS, Abbasinazari M, Sahebkar A (2014) Lipid-modifying effects of adjunctive therapy with curcuminoids–piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement Ther Med 22:851–857

    Article  PubMed  Google Scholar 

  31. Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendía LE, Majeed M, Sahebkar A (2018) Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: a randomized double-blind placebo-controlled trial. Drug Res 68:403–409

    Article  CAS  Google Scholar 

  32. Parsamanesh N, Moossavi M, Bahrami A, Butler AE, Sahebkar A (2018) Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 136:181–193

    Article  CAS  PubMed  Google Scholar 

  33. Shakeri A, Sahebkar A (2016) Optimized curcumin formulations for the treatment of Alzheimer’s disease: a patent evaluation. J Neurosci Res 94:111–113

    Article  CAS  PubMed  Google Scholar 

  34. Bianconi V, Mannarino MR, Sahebkar A, Cosentino T, Pirro M (2018) Cholesterol-lowering nutraceuticals affecting vascular function and cardiovascular disease risk. Curr Cardiol Rep 20:1–20

    Article  Google Scholar 

  35. Keihanian F, Saeidinia A, Bagheri RK, Johnston TP, Sahebkar A (2018) Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol 233:4497–4511

    Article  CAS  PubMed  Google Scholar 

  36. Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A (2018) Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J Cell Physiol 233:830–848

    Article  CAS  PubMed  Google Scholar 

  37. Kasi PD, Tamilselvam R, Skalicka-Woźniak K, Nabavi SF, Daglia M, Bishayee A, Pazoki-Toroudi H, Nabavi SM (2016) Molecular targets of curcumin for cancer therapy: an updated review. Tumor Biol 37:13017–13028

    Article  CAS  Google Scholar 

  38. Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P, Zhou M, Wang K (2019) Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. Int J Biol Sci 15:1200–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bahrami A, Majeed M, Sahebkar A (2019) Curcumin: a potent agent to reverse epithelial-to-mesenchymal transition. Cell Oncol 42:405–421

    Article  CAS  Google Scholar 

  40. Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C (2017) Anticancer activity of curcumin and its analogues: preclinical and clinical studies. Cancer Invest 35:1–22

    Article  CAS  PubMed  Google Scholar 

  41. Marjaneh RM, Rahmani F, Hassanian SM, Rezaei N, Hashemzehi M, Bahrami A, Ariakia F, Fiuji H, Sahebkar A, Avan A (2018) Phytosomal curcumin inhibits tumor growth in colitis-associated colorectal cancer. J Cell Physiol 233:6785–6798

    Article  CAS  PubMed  Google Scholar 

  42. Shabaninejad Z, Pourhanifeh MH, Movahedpour A, Mottaghi R, Nickdasti A, Mortezapour E, Shafiee A, Hajighadimi S, Moradizarmehri S, Sadeghian M, Mousavi SM, Mirzaei H (2020) Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur J Med Chem 188:112040

    Article  CAS  PubMed  Google Scholar 

  43. Ahmed T, Gilani AH (2014) Therapeutic potential of turmeric in Alzheimer’s disease: curcumin or curcuminoids? Phytother Res 28:517–525

    Article  CAS  PubMed  Google Scholar 

  44. Pan J, Li H, Ma J-F, Tan Y-Y, Xiao Q, Ding J-Q, Chen S-D (2012) Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction. Transl Neurodegener 1:1–9

    Article  CAS  Google Scholar 

  45. Perry MC, Demeule M, Regina A, Moumdjian R, Beliveau R (2010) Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol Nutr Food Res 54:1192–1201

    CAS  PubMed  Google Scholar 

  46. Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, Zhai G (2016) Oral bioavailability of curcumin: problems and advancements. J Drug Target 24:694–702

    Article  CAS  PubMed  Google Scholar 

  47. Ghasemi F, Bagheri H, Barreto GE, Read MI, Sahebkar A (2019) Effects of curcumin on microglial cells. Neurotox Res 36:12–26

    Article  CAS  PubMed  Google Scholar 

  48. Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Padamati J, Chandra R, Chidambaram SB, Sakharkar MK (2019) Benefits of curcumin in brain disorders. BioFactors 45:666–689

    Article  CAS  PubMed  Google Scholar 

  49. Shabaninejad Z, Pourhanifeh MH, Movahedpour A, Mottaghi R, Nickdasti A, Mortezapour E, Shafiee A, Hajighadimi S, Moradizarmehri S, Sadeghian M (2020) Therapeutic potentials of curcumin in the treatment of glioblstoma. Eur J Med Chem 188:112040

    Article  CAS  PubMed  Google Scholar 

  50. Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A (2020) Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol Rep 72:769–782

    Article  CAS  PubMed  Google Scholar 

  51. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8:187–198

    Article  CAS  PubMed  Google Scholar 

  52. Wu J, Su H-k, Yu Z-h, Xi S-y, Guo C-c, Hu Z-y, Qu Y, Cai H-p, Zhao Y-y, Zhao H-f (2020) Skp2 modulates proliferation, senescence and tumorigenesis of glioma. Cancer Cell Int 20:1–11

    CAS  Google Scholar 

  53. Wang L, Ye X, Cai X, Su J, Ma R, Yin X, Zhou X, Li H, Wang Z (2015) Curcumin suppresses cell growth and invasion and induces apoptosis by down-regulation of Skp2 pathway in glioma cells. Oncotarget 6:18027

    Article  PubMed  PubMed Central  Google Scholar 

  54. Park K-S, Yoon S-Y, Park S-H, Hwang J-H (2019) Anti-migration and anti-invasion effects of curcumin via suppression of fascin expression in glioblastoma cells. Brain Tumor Res Treat 7:16–24

    Article  PubMed  PubMed Central  Google Scholar 

  55. Park K-S, Lee HW, Park S-H, Park TI, Hwang J-H (2016) The clinical significance of fascin expression in a newly diagnosed primary glioblastoma. J Neurooncol 129:495–503

    Article  CAS  PubMed  Google Scholar 

  56. Wang P, Hao X, Li X, Yan Y, Tian W, Xiao L, Wang Z, Dong J (2021) Curcumin inhibits adverse psychological stress-induced proliferation and invasion of glioma cells via down-regulating the ERK/MAPK pathway. J Cell Mol Med 25:7190–7203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Woo M-S, Jung S-H, Kim S-Y, Hyun J-W, Ko K-H, Kim W-K, Kim H-S (2005) Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells. Biochem Biophys Res Commun 335:1017–1025

    Article  CAS  PubMed  Google Scholar 

  58. Kim S-Y, Jung S-H, Kim H-S (2005) Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astroglioma cells. Biochem Biophys Res Commun 337:510–516

    Article  CAS  PubMed  Google Scholar 

  59. Zohrabian VM, Forzani B, Chau Z, Murali R, Jhanwar-Uniyal M (2009) Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res 29:119–123

    CAS  PubMed  Google Scholar 

  60. Weissenberger J, Priester M, Bernreuther C, Rakel S, Glatzel M, Seifert V, Kögel D (2010) Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1, 2/STAT3 signaling pathway. Clin Cancer Res 16:5781–5795

    Article  CAS  PubMed  Google Scholar 

  61. Senft C, Polacin M, Priester M, Seifert V, Kögel D, Weissenberger J (2010) The nontoxic natural compound curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas. BMC Cancer 10:1–8

    Article  CAS  Google Scholar 

  62. Brooks AJ, Putoczki T (2020) JAK-STAT signalling pathway in cancer. Cancers 12(7):1971

    Article  CAS  PubMed Central  Google Scholar 

  63. Shi L, Wang Z, Sun G (2015) Curcumin induces glioma stem-like cell formation. NeuroReport 26:167–172

    Article  CAS  PubMed  Google Scholar 

  64. Ikushima H, Todo T, Ino Y, Takahashi M, Saito N, Miyazawa K, Miyazono K (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286:41434–41441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Su C-C, Wang M-J, Chiu T-L (2010) The anti-cancer efficacy of curcumin scrutinized through core signaling pathways in glioblastoma. Int J Mol Med 26:217–224

    CAS  PubMed  Google Scholar 

  66. Zhou Y, Liu L (2021) Curcumin induces human glioma cell apoptosis by promoting reactive oxygen species production. Indian J Pharm Sci 83:714–722

    Article  CAS  Google Scholar 

  67. Liu T, Huang W, D-m LAI, W-w CHENG, HUANG Q, LIU Z-x (2009) The regulatory effect of curcumin on the differential expression of Bcl-2 and Caspase 8 and its promotional effect of apoptosis mechanism in human glioma cells. Ch Oncol 4:252

    Google Scholar 

  68. Kang S-K, Cha S-H, Jeon H-G (2006) Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev 15:165–174

    Article  CAS  PubMed  Google Scholar 

  69. Huang T-Y, Tsai T-H, Hsu C-W, Hsu Y-C (2010) Curcuminoids suppress the growth and induce apoptosis through caspase-3-dependent pathways in glioblastoma multiforme (GBM) 8401 cells. J Agric Food Chem 58:10639–10645

    Article  CAS  PubMed  Google Scholar 

  70. Khaw AK, Hande MP, Kalthur G, Hande MP (2013) Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells. J Cell Biochem 114:1257–1270

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Tu L, Zhou X, Li B (2018) Curcumin-mediated induction of apoptosis in human glioma CHME cells. Med Sci Monit Basic Res 24:216

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zanotto-Filho A, Braganhol E, Edelweiss MI, Behr GA, Zanin R, Schröder R, Simões-Pires A, Battastini AMO, Moreira JCF (2012) The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma. J Nutr Biochem 23:591–601

    Article  CAS  PubMed  Google Scholar 

  73. Cheng C, Jiao JT, Qian Y, Guo XY, Huang J, Dai MC, Zhang L, Ding XP, Zong D, Shao JF (2016) Curcumin induces G2/M arrest and triggers apoptosis via FoxO1 signaling in U87 human glioma cells. Mol Med Rep 13:3763–3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. ZeXia W, Ye F, Fei L, LiangZhu Y, MinCai L, MeiChun H (2019) Inhibitory effect and mechanism of curcumin on glioma cells. Chongqing Med 48:2903–2908

    Google Scholar 

  75. Choi BH, Kim CG, Bae Y-S, Lim Y, Lee YH, Shin SY (2008) p21Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Can Res 68:1369–1377

    Article  CAS  Google Scholar 

  76. Liu E, Wu J, Cao W, Zhang J, Liu W, Jiang X, Zhang X (2007) Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma. J Neurooncol 85:263–270

    Article  CAS  PubMed  Google Scholar 

  77. Du Y, Cheng Y, Su G (2019) The essential role of tumor suppressor gene ING4 in various human cancers and non-neoplastic disorders. Biosci Rep. https://doi.org/10.1042/BSR20180773

  78. Shao B, Liu E (2017) Expression of ING4 is negatively correlated with cellular proliferation and microvessel density in human glioma. Oncol Lett 14:3663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Gao X, Deeb D, Jiang H, Liu YB, Dulchavsky SA, Gautam SC (2005) Curcumin differentially sensitizes malignant glioma cells to TRAIL/Apo2L-mediated apoptosis through activation of procaspases and release of cytochrome c from mitochondria. J Exp Ther Oncol 5:39–48

    PubMed  Google Scholar 

  80. X Gao D Deeb, Y Liu, RA Chapman, SC Gautam (2004) Curcumin (diferuloyl-methane) chemosensitizes human glioma cells (U87) to TRAIL-induced apoptosis. AACR

  81. Seyithanoğlu MH, Abdallah A, Kitiş S, Güler EM, Koçyiğit A, Dündar TT, Papaker MG (2019) Investigation of cytotoxic, genotoxic, and apoptotic effects of curcumin on glioma cells. Cell Mol Biol 65:101–108

    Article  PubMed  Google Scholar 

  82. Guo-an L, Ya-dong J, Miao-miao R, Gui-chen L, Qi-li Y, Lan D (2020) Curcumin inducing apoptosis of U87 cells by promoting ROS production. Nat Prod Res Dev 32:541

    Google Scholar 

  83. Gersey ZC, Rodriguez GA, Barbarite E, Sanchez A, Walters WM, Ohaeto KC, Komotar RJ, Graham RM (2017) Curcumin decreases malignant characteristics of glioblastoma stem cells via induction of reactive oxygen species. BMC Cancer 17:1–11

    Article  CAS  Google Scholar 

  84. Garrido-Armas M, Corona JC, Escobar ML, Torres L, Ordóñez-Romero F, Hernández-Hernández A, Arenas-Huertero F (2018) Paraptosis in human glioblastoma cell line induced by curcumin. Toxicol In Vitro 51:63–73

    Article  CAS  PubMed  Google Scholar 

  85. Thayyullathil F, Rahman A, Pallichankandy S, Patel M, Galadari S (2014) ROS-dependent prostate apoptosis response-4 (Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma. FEBS Open Bio 4:763–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee J-E, Yoon SS, Lee J-W, Moon E-Y (2020) Curcumin-induced cell death depends on the level of autophagic flux in A172 and U87MG human glioblastoma cells. Chin J Nat Med 18:114–122

    CAS  PubMed  Google Scholar 

  87. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39

    Article  CAS  PubMed  Google Scholar 

  88. Shinojima N, Yokoyama T, Kondo Y, Kondo S (2007) Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3:635–637

    Article  CAS  PubMed  Google Scholar 

  89. Zhuang W, Long L, Zheng B, Ji W, Yang N, Zhang Q, Liang Z (2012) Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy. Cancer Sci 103:684–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fong D, Yeh A, Naftalovich R, Choi TH, Chan MM (2010) Curcumin inhibits the side population (SP) phenotype of the rat C6 glioma cell line: towards targeting of cancer stem cells with phytochemicals. Cancer Lett 293:65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fong D, Chan MM (2012) Targeting cancer stem cells with phytochemicals: inhibition of the rat C6 glioma side population by curcumin. Stem Cells and Cancer Stem Cells. Springer, Netherlands, pp 61–68

    Chapter  Google Scholar 

  92. Su X, Chen S, Lu H, Li H, Qin C (2021) Study on the inhibitory effect of curcumin on GBM and Its potential mechanism. Drug Des Dev Ther 15:2769

    Article  Google Scholar 

  93. Jiang B-H, Agani F, Passaniti A, Semenza GL (1997) V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Can Res 57:5328–5335

    CAS  Google Scholar 

  94. Trojanowicz B, Winkler A, Hammje K, Chen Z, Sekulla C, Glanz D, Schmutzler C, Mentrup B, Hombach-Klonisch S, Klonisch T (2009) Retinoic acid-mediated down-regulation of ENO1/MBP-1 gene products caused decreased invasiveness of the follicular thyroid carcinoma cell lines. J Mol Endocrinol 42:249–260

    Article  CAS  PubMed  Google Scholar 

  95. Gao J, Zhao R, Xue Y, Niu Z, Cui K, Yu F, Zhang B, Li S (2013) Role of enolase-1 in response to hypoxia in breast cancer: exploring the mechanisms of action. Oncol Rep 29:1322–1332

    Article  CAS  PubMed  Google Scholar 

  96. Bi F, Wang J, Zheng X, Xiao J, Zhi C, Gu J, Zhang Y, Li J, Miao Z, Wang Y (2021) HSP60 participates in the anti-glioma effects of curcumin. Exp Ther Med 21:1–1

    Article  Google Scholar 

  97. Luo Q, Luo H, Fu H, Huang H, Luo K, Li C, Hu R, Zheng C, Lan C, Tang Q (2019) Curcumin suppresses invasiveness and migration of human glioma cells in vitro by inhibiting HDGF/β-catenin complex. J South Med Univ 39:911–916

    CAS  Google Scholar 

  98. Srivastava C, Gupta Y, Irshad K, Chattopadhaya P, Sarkar C, Suri A, Sinha S, Chosdol K (2017) Curcumin downregulates FAT1 expression via NFkB in glioblastoma. Ann Oncol 28:x36

    Article  Google Scholar 

  99. Srivastava C, Irshad K, Gupta Y, Sarkar C, Suri A, Chattopadhyay P, Sinha S, Chosdol K (2020) NFкB is a critical transcriptional regulator of atypical cadherin FAT1 in glioma. BMC Cancer 20:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zraikat M, Gharaibeh M, Alshelleh T (2020) The effect of curcumin on the invasion and migration of glioma cells. Eur J Med Plants. https://doi.org/10.9734/ejmp/2020/v31i730249

    Article  Google Scholar 

  101. Du WZ, Feng Y, Wang XF, Piao XY, Cui YQ, Chen LC, Lei XH, Sun X, Liu X, Wang HB (2013) Curcumin suppresses malignant glioma cells growth and induces apoptosis by inhibition of SHH/GLI 1 signaling pathway in vitro and vivo. CNS Neurosci Ther 19:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Carballo GB, Honorato JR, de Lopes GPF (2018) A highlight on sonic hedgehog pathway. Cell Commun Signal 16:1–15

    Article  CAS  Google Scholar 

  103. Tan X, Kim G, Lee D, Oh J, Kim M, Piao C, Lee J, Lee MS, Jeong JH, Lee M (2018) A curcumin-loaded polymeric micelle as a carrier of a microRNA-21 antisense-oligonucleotide for enhanced anti-tumor effects in a glioblastoma animal model. Biomater sci 6:407–417

    Article  CAS  PubMed  Google Scholar 

  104. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Can Res 65:6029–6033

    Article  CAS  Google Scholar 

  105. Yeh W-L, Lin H-Y, Huang C-Y, Huang B-R, Lin C, Lu D-Y, Wei K-C (2015) Migration-prone glioma cells show curcumin resistance associated with enhanced expression of miR-21 and invasion/anti-apoptosis-related proteins. Oncotarget 6:37770

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li W, Yang W, Liu Y, Chen S, Chin S, Qi X, Zhao Y, Liu H, Wang J, Mei X (2017) MicroRNA-378 enhances inhibitory effect of curcumin on glioblastoma. Oncotarget 8:73938

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yin S, Du W, Wang F, Han B, Cui Y, Yang D, Chen H, Liu D, Liu X, Zhai X (2018) MicroRNA-326 sensitizes human glioblastoma cells to curcumin via the SHH/GLI1 signaling pathway. Cancer Biol Ther 19:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang X, Zhang Y, He Z, Yin K, Li B, Zhang L, Xu Z (2019) Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2. Cell Death Dis 10:788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Guo K, Ma Q, Wang L, Hu H, Li J, Zhang D, Zhang M (2009) Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep 22:825–830

    CAS  PubMed  Google Scholar 

  110. Zhang Z, Li C, Tan Q, Xie C, Yang Y, Zhan W, Han F, Shanker Sharma H, Sharma A (2017) Curcumin suppresses tumor growth and angiogenesis in human glioma cells through modulation of vascular endothelial growth factor/angiopoietin-2/thrombospondin-1 signaling. CNS Neurol Disord 16:346–350

    Article  Google Scholar 

  111. Zhang Z-J, Zhao L-X, Cao D-L, Zhang X, Gao Y-J, Xia C (2012) Curcumin inhibits LPS-induced CCL2 expression via JNK pathway in C6 rat astrocytoma cells. Cell Mol Neurobiol 32:1003–1010

    Article  CAS  PubMed  Google Scholar 

  112. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P (2016) CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Can Res 76:5671–5682

    Article  CAS  Google Scholar 

  113. Walker BC, Adhikari S, Mittal S (2021) Therapeutic potential of curcumin for the treatment of malignant gliomas. Exon Publ. https://doi.org/10.36255/exonpublications.gliomas.2021.chapter8

    Article  Google Scholar 

  114. Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, Zhang L, Fu C, Chen D, Xie T (2020) Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: a comprehensive review. Int J Nanomed 15:2563

    Article  CAS  Google Scholar 

  115. Luo S-M, Wu Y-P, Huang L-C, Huang S-M, Hueng D-Y (2021) The anti-cancer effect of four curcumin analogues on human glioma cells. Onco Targets Ther 14:4345

    Article  PubMed  PubMed Central  Google Scholar 

  116. Shi L, Sun G, Zhu H (2020) Demethoxycurcumin analogue DMC-BH inhibits orthotopic growth of glioma stem cells by targeting JNK/ERK signaling. Aging 12:14718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shi L, Gao L-l, Cai S-z, Xiong Q-w, Ma Z-r (2021) A novel selective mitochondrial-targeted curcumin analog with remarkable cytotoxicity in glioma cells. Eur J Med Chem 221:113528

    Article  CAS  PubMed  Google Scholar 

  118. Qian C, Wang B, Zou Y, Zhang Y, Hu X, Sun W, Xiao H, Liu H, Shi L (2019) MicroRNA 145 enhances chemosensitivity of glioblastoma stem cells to demethoxycurcumin. Cancer Manag Res 11:6829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mirgani MT, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F, Babaei E (2014) Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomed 9:403

    Google Scholar 

  120. Shin HJ, Lee S, Jung HJ (2019) A curcumin derivative hydrazinobenzoylcurcumin suppresses stem-like features of glioblastoma cells by targeting Ca2+/calmodulin-dependent protein kinase II. J Cell Biochem 120:6741–6752

    Article  CAS  PubMed  Google Scholar 

  121. Wang Y-y, Zhao R, Zhe H (2015) The emerging role of CaMKII in cancer. Oncotarget 6:11725

    Article  PubMed  PubMed Central  Google Scholar 

  122. Chai S, Xu X, Wang Y, Zhou Y, Zhang C, Yang Y, Yang Y, Xu H, Xu R, Wang K (2015) Ca2+/calmodulin-dependent protein kinase IIγ enhances stem-like traits and tumorigenicity of lung cancer cells. Oncotarget 6:16069

    Article  PubMed  PubMed Central  Google Scholar 

  123. Sansalone L, Veliz EA, Myrthil NG, Stathias V, Walters W, Torrens II, Schürer SC, Vanni S, Leblanc RM, Graham RM (2019) Novel curcumin inspired bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death. Cancers 11:357

    Article  CAS  PubMed Central  Google Scholar 

  124. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  125. Ramachandran C, Portalatin G, Quirin K-W, Escalon E, Khatib Z, Melnick SJ (2015) Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells. J Complement Integr Med 12:307–315

    Article  PubMed  Google Scholar 

  126. He Y, Wu C, Duan J, Miao J, Ren H, Liu J (2020) Anti-glioma effect with targeting therapy using folate modified nano-micelles delivery curcumin. J Biomed Nanotechnol 16:1–13

    Article  CAS  PubMed  Google Scholar 

  127. Zhang H, van Os WL, Tian X, Zu G, Ribovski L, Bron R, Bussmann J, Kros A, Liu Y, Zuhorn IS (2021) Development of curcumin-loaded zein nanoparticles for transport across the blood–brain barrier and inhibition of glioblastoma cell growth. Biomater Sci. https://doi.org/10.1039/D0BM01536A

    Article  PubMed  PubMed Central  Google Scholar 

  128. Babaei M, Davoodi J, Dehghan R, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2020) Thermosensitive composite hydrogel incorporated with curcumin-loaded nanopolymersomes for prolonged and localized treatment of glioma. J Drug Deliv Sci Technol 59:101885

    Article  CAS  Google Scholar 

  129. Xiang Y, Duan X, Feng L, Jiang S, Deng L, Shen J, Yang Y, Guo R (2019) tLyp-1-conjugated GSH-sensitive biodegradable micelles mediate enhanced pUNO1-hTRAILa/curcumin co-delivery to gliomas. Chem Eng J 374:392–404

    Article  CAS  Google Scholar 

  130. Li R, Song Y, Fouladian P, Arafat M, Chung R, Kohlhagen J, Garg S (2021) Three-dimensional printing of curcumin-loaded biodegradable and flexible scaffold for intracranial therapy of glioblastoma multiforme. Pharmaceutics 13:471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gelardi E, Caprioglio D, Colombo G, Mazzoletti D, Mattoteia D, Salamone S, Ferraris D, Aronica E, Nato G, Buffo A (2021) Curcumin-based-fluorescent probes targeting ALDH1A3 as a promising tool for glioblastoma precision surgery and early diagnosis

  132. Maiti P, Al-Gharaibeh A, Kolli N, Dunbar GL (2017) Solid lipid curcumin particles induce more dna fragmentation and cell death in cultured human glioblastoma cells than does natural curcumin. Oxid Med Cell Longev. https://doi.org/10.1155/2017/9656719

    Article  PubMed  PubMed Central  Google Scholar 

  133. Maiti P, Scott J, Sengupta D, Al-Gharaibeh A, Dunbar GL (2019) Curcumin and solid lipid curcumin particles induce autophagy, but inhibit mitophagy and the PI3K-Akt/mTOR pathway in cultured glioblastoma cells. Int J Mol Sci 20:399

    Article  PubMed Central  CAS  Google Scholar 

  134. Dhandapani KM, Mahesh VB, Brann DW (2007) Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFκB transcription factors. J Neurochem 102:522–538

    Article  CAS  PubMed  Google Scholar 

  135. Newlands E, Stevens M, Wedge S, Wheelhouse R, Brock C (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23:35–61

    Article  CAS  PubMed  Google Scholar 

  136. Alexiou GA, Vartholomatos E, Tsamis KI, Peponi E, Markopoulos G, Papathanasopoulou VA, Tasiou I, Ragos V, Tsekeris P, Kyritsis AP (2019) Combination treatment for glioblastoma with temozolomide, DFMO and radiation. J BUON 24:397–404

    PubMed  Google Scholar 

  137. Lee SY (2016) Temozolomide resistance in glioblastoma multiforme. Genes Dis 3:198–210

    Article  PubMed  PubMed Central  Google Scholar 

  138. Xia Q, Liu L, Li Y, Zhang P, Han D, Dong L (2021) Therapeutic perspective of temozolomide resistance in glioblastoma treatment. Cancer Invest 39:627–644

    Article  CAS  PubMed  Google Scholar 

  139. Huang B-R, Tsai C-H, Chen C-C, Way T-D, Kao J-Y, Liu Y-S, Lin H-Y, Lai S-W, Lu D-Y (2019) Curcumin promotes connexin 43 degradation and temozolomide-induced apoptosis in glioblastoma cells. Am J Chin Med 47:657–674

    Article  CAS  PubMed  Google Scholar 

  140. Grek CL, Sheng Z, Naus CC, Sin WC, Gourdie RG, Ghatnekar GG (2018) Novel approach to temozolomide resistance in malignant glioma: connexin43-directed therapeutics. Curr Opin Pharmacol 41:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chen T-C, Chuang J-Y, Ko C-Y, Kao T-J, Yang P-Y, Yu C-H, Liu M-S, Hu S-L, Tsai Y-T, Chan H (2020) AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol 30:101413

    Article  CAS  PubMed  Google Scholar 

  142. Bagherian A, Roudi B, Masoudian N, Mirzaei H (2021) Anti-glioblastoma effects of nanomicelle-curcumin plus erlotinib. Food Funct. https://doi.org/10.1039/D1FO01611C

    Article  PubMed  Google Scholar 

  143. Wu H, Liu Q, Cai T, Chen YD, Wang ZF (2015) Induction of microRNA-146a is involved in curcumin-mediated enhancement of temozolomide cytotoxicity against human glioblastoma. Mol Med Rep 12:5461–5466

    Article  CAS  PubMed  Google Scholar 

  144. Bagherian A, Mardani R, Roudi B, Taghizadeh M, Banfshe HR, Ghaderi A, Davoodvandi A, Shamollaghamsari S, Hamblin MR, Mirzaei H (2020) Combination therapy with nanomicellar-curcumin and temozolomide for in vitro therapy of glioblastoma multiforme via Wnt signaling pathways. J Mol Neurosci 70:1471–1483

    Article  CAS  PubMed  Google Scholar 

  145. Yin H, Zhou Y, Wen C, Zhou C, Zhang W, Hu X, Wang L, You C, Shao J (2014) Curcumin sensitizes glioblastoma to temozolomide by simultaneously generating ROS and disrupting AKT/mTOR signaling. Oncol Rep 32:1610–1616

    Article  CAS  PubMed  Google Scholar 

  146. Dilnawaz F, Sahoo SK (2013) Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur J Pharm Biopharm 85:452–462

    Article  CAS  PubMed  Google Scholar 

  147. Zanotto-Filho A, Braganhol E, Klafke K, Figueiró F, Terra SR, Paludo FJ, Morrone M, Bristot IJ, Battastini AM, Forcelini CM (2015) Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett 358:220–231

    Article  CAS  PubMed  Google Scholar 

  148. Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y (2016) Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces 8:32159–32169

    Article  CAS  PubMed  Google Scholar 

  149. Wen X, Cheng X, Hu D, Li W, Ha J, Kang Z, Zhang M, Huang Y, Wu S (2016) Combination of curcumin with an anti-transferrin receptor antibody suppressed the growth of malignant gliomas in vitro. Turk Neurosurg 26:209–214

    PubMed  Google Scholar 

  150. Mujokoro B, Madani F, Esnaashari SS, Khosravani M, Adabi M (2020) Combination and co-delivery of methotrexate and curcumin: preparation and in vitro cytotoxic investigation on glioma cells. J Pharm Innov 15:617–626

    Article  Google Scholar 

  151. Zhao J, Zhu J, Lv X, Xing J, Liu S, Chen C, Xu Y (2017) Curcumin potentiates the potent antitumor activity of ACNU against glioblastoma by suppressing the PI3K/AKT and NF-κB/COX-2 signaling pathways. Onco Targets Ther 10:5471

    Article  PubMed  PubMed Central  Google Scholar 

  152. Jamali Z, Hejazi SM, Ebrahimi SM, Moradi-Sardareh H, Paknejad M (2018) Effects of LED-Based photodynamic therapy using red and blue lights, with natural hydrophobic photosensitizers on human glioma cell line. Photodiagn Photodyn Ther 21:50–54

    Article  CAS  Google Scholar 

  153. Zoi V, Galani V, Vartholomatos E, Zacharopoulou N, Tsoumeleka E, Gkizas G, Bozios G, Tsekeris P, Chousidis I, Leonardos I (2021) Curcumin and radiotherapy exert synergistic anti-glioma effect in vitro. Biomedicines 9:1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang L, Ding X, Huang J, Jiang C, Cao B, Qian Y, Cheng C, Dai M, Guo X, Shao J (2015) In vivo Radiosensitization of human glioma U87 cells induced by upregulated expression of DUSP-2 after treatment with curcumin. Curr Signal Transduct Ther 10:119–125

    Article  CAS  Google Scholar 

  155. Yu Q, Jianfen M, Xiaoyi G, Jun S, Yongtao Y, Boqiang C (2015) Curcumin enhances the radiosensitivity of U87 cells by inducing DUSP-2 up-regulation. Cell Physiol Biochem 35:1381–1393

    Article  PubMed  CAS  Google Scholar 

  156. Gao P-P, Qi X-W, Sun N, Sun Y-Y, Zhang Y, Tan X-N, Ding J, Han F (1876) Zhang Y (2021) The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer. Biochimica et Biophysica Acta 1:188562

    Google Scholar 

  157. Wang W-H, Shen C-Y, Chien Y-C, Chang W-S, Tsai C-W, Lin Y-H, Hwang J-J (2020) Validation of enhancing effects of curcumin on radiotherapy with F98/FGT glioblastoma-bearing rat model. Int J Mol Sci 21:4385

    Article  CAS  PubMed Central  Google Scholar 

  158. Sminia P, van den Berg J, van Kootwijk A, Hageman E, Slotman BJ, Verbakel WF (2021) Experimental and clinical studies on radiation and curcumin in human glioma. J Cancer Res Clin Oncol 147:403–409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the assistance of the Clinical Research Development Unit of Akbar Hospital in conducting this review.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

AB designed the article contents. MM wrote the original manuscript. GAF and SA made revisions to the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Afsane Bahrami.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadian, M., Ahmadi, S.S., Bahrami, A. et al. Review on the Therapeutic Potential of Curcumin and its Derivatives on Glioma Biology. Neurochem Res 47, 2936–2953 (2022). https://doi.org/10.1007/s11064-022-03666-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03666-1

Keywords

Navigation